Ni Köpük Destekli Co Katalizörü Varlığında Sodyum Borhidrürün Hidrolizinden Yüksek Aktif Hidrojen Üretimi
DOI:
https://doi.org/10.5281/zenodo.14566460Anahtar Kelimeler:
Co-B/Ni Köpük, Hidrojen, Sodyum Borhidrür, HidrolizÖzet
Bu çalışmada, akımsız kaplama yöntemi ile hazırlanan Co-B/Ni köpük katalizörü varlığında NaBH4 hidroliz deneyleri gerçekleştirildi. NaOH konsantrasyonu, NaBH4 konsantrasyonu ve katalizör miktarı gibi farklı parametrelerin hidroliz üzerindeki etkisi incelendi. Optimum parametreler ışığında geçekleştirilen hidroliz deneyleri sonucunda maksimum hidrojen üretim hızı ile aktivasyon enerjisi (Ea) sırasıyla 7050.00 ml/dk*g ve 26.00kJ*mol-1 olarak elde edildi. Ayrıca, düşük maliyetli ve yüksek performansa sahip olan Co-B/Ni köpük katalizörünün yapısal ve morfolojik özellikleri sırasıyla X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) ölçümleri yapılarak incelendi.
Referanslar
Bozkurt, G., Özer, A., Yurtcan, A.B., 2019. Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4. Energy, 180: 702-713.
Dai, H.B., Liang, Y., Wang, P., Cheng, H.M., 2008. Amorphous cobalt–boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution. Journal of Power Sources, 177(1): 17-23.
Elumalai, M., Rajasekaran, A. Chinnaraja, B., 2018. Performance of Pt–Ru–Mo ternary catalysts for borohydride electro-oxidation in membraneless fuel cell. International Journal of Industrial Engineering and Management, 2: 108-118.
Fernandes, R., Patel, N., Miotello, A., 2009. Efficient catalytic properties of Co–Ni–P–B catalyst powders for hydrogen generation by hydrolysis of alkaline solution of NaBH4. International Journal of Hydrogen Energy, 34(7): 2893-2900.
Guo, J., Wang, B., Yang, D., Wan, Z., Yan, P., Tian, J., Isimjan, T.T., Yang, X., 2020. Rugae-like Ni2P-CoP nanoarrays as a bi-functional catalyst for hydrogen generation: NaBH4 hydrolysis and water reduction. Applied Catalysis B: Environmental, 265: 118584.
Huang, J., Qian, W., Ma, H., Zhang, H., Ying, W., 2017. Highly selective production of heavy hydrocarbons over cobalt–graphene–silica nanocomposite catalysts. RSC Advances, 7(53): 33441-33449.
Kim, Y., Kim, D.H., 2019. Understanding the effect of Pd size on formic acid dehydrogenation via size-controlled Pd/C catalysts prepared by NaBH4 treatment. Applied Catalysis B: Environmental, 244: 684-693.
Kong, V., Foulkes, F., Kirk, D., Hinatsu, J., 1999. Development of hydrogen storage for fuel cellgenerators. i: Hydrogen generation using hydrolysishydrides. International Journal of Hydrogen Energy, 24(7): 665-675.
Kumar, N., Chittappa, H., Bhat, V., 2017. Statistical analysis of electroless nickel coating on carbon fiber. International Journal of Materials Science, 12(2): 229-237.
Lee, J., Kong, K.Y., Jung, CR., Cho, E., Yoon, S. P., Han, J., Lee, T.G., Nam, S.W., 2007. A structured Co–B catalyst for hydrogen extraction from NaBH4 solution. Catalysis Today, 120(3-4): 305-310.
Onat, E., Çevik, S., Şahin, Ö., Horoz, S., İzgi, M.S., 2021. Investigation of high catalytic activity catalyst for high hydrogen production rate: Co-Ru@ MOF. Journal of the Australian Ceramic Society, 1-7.
Onat, E., Izgi, M.S., Şahin, Ö., Saka, C., 2024. Highly active hydrogen production from hydrolysis of potassium borohydride by caffeine carbon quantum dot-supported cobalt catalyst in ethanol solvent by hydrothermal treatment. International Journal of Hydrogen Energy, 51: 362-375.
Pei, Z.W., Wu, C., Bai, Y., Liu, X., Wu, F., 2017. NaNH2–NaBH4 hydrogen storage composite materials synthesized via liquid phase ball-milling: Influence of Co–Ni–B catalyst on the dehydrogenation performances. International Journal of Hydrogen Energy, 42(21): 14725-14733.
Pornea, A.M., Abebe, M.W., Kim, H., 2019. Ternary NiCoP urchin like 3D nanostructure supported on nickel foam as a catalyst for hydrogen generation of alkaline NaBH4. Chemical Physics, 516: 152-159.
Rakap, M., 2020. PVP-Protected Pt-Ru nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of sodium borohydride. General Chemistry, 6(4): 200003.
Schlapbach, L., Züttel, A., 2011. Hydrogen-storage materials for mobile applications. Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group, 265-270.
Shahzad, K., Fayyad, E.M., Nawaz, M., Fayyaz, O., Shakoor, R., Hassan, M. K., Umer, M.A., Baig, M., Raza, A., Abdullah, A.M., 2020. Corrosion and heat treatment study of electroless NiP-Ti nanocomposite coatings deposited on HSLA steel. Nanomaterials, 10(10): 1932.
Shen, J., Chen, W., Lv, G., Yang, Z., Yan, J., Liu, X., Dai, Z., 2021. Hydrolysis of NH3BH3 and NaBH4 by graphene quantum dots-transition metal nanoparticles for highly effective hydrogen evolution. International Journal of Hydrogen Energy, 46(1): 796-805.
Shi, L., Chen, Z., Jian, Z., Guo, F., Gao, C., 2019. Carbon nanotubes-promoted Co–B catalysts for rapid hydrogen generation via NaBH4 hydrolysis. International Journal of Hydrogen Energy, 44(36): 19868-19877.
Suda, S., Sun, Y.M., Liu, B.H., Zhou, Y., Morimitsu, S., Arai, K., Tsukamoto, N., Uchida, M., Candra, Y., Li, Z.P., 2001. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Applied Physics A, 72(2): 209-212.
Şahin, Ö., Bozkurt, A., Yayla, M., Kazıcı, H.Ç., İzgi, M.S., 2020. As a highly efficient reduced graphene oxide-supported ternary catalysts for the fast hydrogen release from NaBH 4. Graphene Technology, 5(3): 103-111.
Tang, C., Qu, F., Asiri, A.M., Luo, Y., Sun, X., 2017. CoP nanoarray: a robust non-noble-metal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane. Inorganic Chemistry Frontiers, 4(4): 659-662.
Xie, L., Wang, K., Du, G., Asiri, A.M., Sun, X., 2017. Self-standing cobalt oxide nanosheet array: An monolithic catalyst for effective hydrolysis of NaBH4 in alkaline media. International Journal of Hydrogen Energy, 42(52): 30639-30645.
Yeh, J.Y., Matsagar, B.M., Chen, S.S., Sung, H.L., Tsang, D.C., Li, Y.P., Wu, K.C.W., 2020. Synergistic effects of Pt-embedded, MIL-53-derived catalysts (Pt@ Al2O3) and NaBH4 for water-mediated hydrogenolysis of biomass-derived furfural to 1, 5-pentanediol at near-ambient temperature. Journal of Catalysis, 390: 46-56.
Zhang, J., Lin, F., Yang, L., He, Z., Huang, X., Zhang, D., Dong, H., 2020. Ultrasmall Ru nanoparticles supported on chitin nanofibers for hydrogen production from NaBH4 hydrolysis. Chinese Chemical Letters, 31(7): 2019-2022.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2024 ISPEC JOURNAL OF SCIENCE INSTITUTE

Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.