Microstructural and Dielectric Characterization of MgO-added Al₂O₃-based Ceramics in the Terahertz Range

Yazarlar

  • Kagan Murat PURLU Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Electric-Electronic Engineering Department, Sivas https://orcid.org/0000-0002-2608-7066
  • Elif ISIK Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Metallurgical and Materials Engineering Department, Sivas https://orcid.org/0000-0001-8289-9512
  • Betül KAFKASLIOGLU YILDIZ Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Metallurgical and Materials Engineering Department, Sivas https://orcid.org/0000-0002-6527-2918
  • Kholoud ELMABRUK Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Electric-Electronic Engineering Department, Sivas https://orcid.org/0000-0002-8873-584X

DOI:

https://doi.org/10.5281/zenodo.17973311

Anahtar Kelimeler:

Terahertz, Terahertz zaman-alanı spektroskopisi, Alüminyum oksit, Dielektrik özellikler

Özet

This study investigates the effect of MgO addition on the microstructural and dielectric properties of Al2O3 ceramics. The dielectric properties of Al2O3-based ceramics with MgO addition were investigated in the terahertz (THz) range. The fabricated ceramic composites are characterized utilizing THz time-domain spectroscopy (THz-TDS). The relative density reached 99.5% with the addition of MgO, while the particle size decreased significantly. Although microstructural analysis indicated a more homogeneous distribution, complete effectiveness could not be achieved. THz-TDS measurements revealed that MgO-added samples exhibited a higher dielectric constant, lower absorption coefficient, and reduced loss tangent. These findings confirm that, although MgO cannot entirely suppress grain growth, it effectively reduces dielectric losses and enhances the suitability of Al2O3-based ceramics for terahertz applications.

Referanslar

Gao, C., Zheng, Z., Ke, S., Guan, B., He, Q., 2025. Optical–dielectric characterization and contactless thickness measurement of ceramics based on terahertz spectroscopy. Applied Optics, 64(19): 5302–5310.

Hakobyan, D., Hamdi, M., Redon, O., Ballestero, A., Mayaudon, A., Boyer, L., Durand, O., & Abraham, E., 2022. Non-destructive evaluation of ceramic porosity using terahertz time-domain spectroscopy. Journal of the European Ceramic Society, 42(2): 525–533.

Kafkaslıoğlu Yıldız, B., Taşdemir, S., Işık, E., Tür, Y.K., 2024. Assessing the fracture toughness of Al2O3-Sm2O3 ceramics for different Sm2O3 contents using a reliable toughness measurement method: single-edge precracked beam. Journal of Materials Engineering and Performance, 34(11): 9618-9626.

Ma, M., Wang, Y., Navarro-Cía, M., Liu, F., Zhang, F., Liu, Z., Li, Y., Hanham, S.M., Hao, Z., 2019. The dielectric properties of some ceramic substrate materials at terahertz frequencies. Journal of the European Ceramic Society, 39(14): 4424–4428.

Naftaly, M., Greenslade, P.J., Miles, R.E., Evans, D., 2009. Low‐loss nitride ceramics for terahertz windows. Optical Materials, 31(11): 1575–1577.

Ornik, J., Sakaki, M., Koch, M., Balzer, J.C., Benson, N., 2021. 3D Printed Al2O3 for Terahertz Technology. IEEE Access, 9: 5986–5993.

Pałka, N., Kamiński, K., Maciejewski, M., Pacek, D., Świderski, W., 2024. Terahertz nondestructive testing of alumina-based ceramic ballistic protection armor. Infrared Physics and Technology, 137.

Purlu, K.M., Dalgac, S., Isik, E., Yildiz, B.K., Elmabruk, K., 2025. Preparation and dielectric properties of Al2O3-based ceramic composites with Sm2O3 and ZrO2 additives for terahertz applications. Ceramics International.

Rittidech, A., Portia, L., Bongkarn, T., 2006. The relationship between microstructure and mechanical properties of Al₂O₃–MgO ceramics. Materials Science and Engineering A, 438: 395–398.

Purlu, K.M., Dalgac, S., Korkut, I., Elmabruk, K., 2025. Synthesis, fabrication and characterization of 3D printable photopolymer resins for terahertz applications. Journal of Materials Science: Materials in Electronics, 36(22): 1395.

Taşdemir, S., Kafkaslıoğlu Yıldız, B., Işık, E., Tür, Y., 2023. Exploring microstructure and bending strength of Al2O3 ceramics doped with Sm2O3 rare-earth oxide: impact of volume ratios and sintering temperatures. Karadeniz Fen Bilimleri Dergisi, 13(4): 1581–1594.

Tonouchi, M., 2007. Cutting-edge terahertz technology. Nature Photonics, 1(2): 97–105.

Usta, U., Kafkaslıoğlu Yıldız, B., Dara, B.G., 2024. The effect of sintering temperature and low content of TiO2 on the microstructure and mechanical properties of ZTA-TiO2 composites. Journal of the Australian Ceramic Society, 60(1): 35–45.

Purlu, K.M., Dalgac, S., Isik, E., Yildiz, B.K., Elmabruk, K., 2025. Impact of pure α-Al2O3 powder sources and sintering temperature on the behaviour of Al2O3 ceramics in Terahertz band. Journal of the Australian Ceramic Society, 1-9.

Wang, H., Li, W., Ternström, C., Lin, H., Shi, J., 2013. Effect of Mg doping on microwave dielectric properties of translucent polycrystalline alumina ceramic. Ceramics International, 39(2): 1583–1586.

Yang, S., Wei, P., Dai, Y., Liu, S., Han, N., Fu, X., Fan, L., Zhang, M., An, L., 2024. Effects of MgO doping concentration on densification and microstructure of flash sintered alpha-Al₂O₃ ceramics. Journal of the European Ceramic Society, 44: 4210–4215.

İndir

Yayınlanmış

2025-12-19

Nasıl Atıf Yapılır

PURLU, K. M., ISIK, E., KAFKASLIOGLU YILDIZ, B., & ELMABRUK, K. (2025). Microstructural and Dielectric Characterization of MgO-added Al₂O₃-based Ceramics in the Terahertz Range . ISPEC JOURNAL OF SCIENCE INSTITUTE, 4(2), 83–92. https://doi.org/10.5281/zenodo.17973311

Sayı

Bölüm

Makaleler