Thermal Refugia within Temperate Habitats: Modelling Microclimate Landscapes to Predict Bird Distribution Responses
DOI:
https://doi.org/10.5281/zenodo.17976834Keywords:
Temperate Birds, Microclimate Modelling, Thermal Refugia, Species Distribution, Canopy Structure, Climate ChangeAbstract
Temperate ecosystems are undergoing accelerated warming and increasingly frequent thermal extremes, yet the vulnerability of avian species within these landscapes is not determined solely by broad‑scale climate metrics. Rather, the microclimate the fine‑scale thermal environment experienced by individual birds in their habitat plays a critical role in mediating exposure, behaviour, and ultimately distributional responses. This paper presents a framework for modelling microclimate landscapes in temperate habitats and applying these models to predict bird distribution responses under climate change. We synthesise empirical evidence linking microclimate heterogeneity and avian population trends, describe methodological approaches for deriving fine‑scale thermal layers, and implement a conceptual modelling workflow that integrates microclimate availability, thermal safety margins and habitat connectivity. We illustrate how this framework could be applied in temperate forest and shrub–grassland systems, and discuss how structural habitat features (e.g., canopy complexity, northerly aspects, dense shrubs) may act as thermal refugia. Our review of long‑term breeding bird data shows that sites with cooler sub‑canopy conditions in structurally complex forests exhibit less negative population trends, supporting the microclimate‑buffering hypothesis. We conclude that incorporating high‑resolution micro‑climate layers into species distribution modelling significantly refines predictions of vulnerability for temperate birds and highlight key management implications: preserving structural complexity, enhancing connectivity of cooler patches, and targeting micro‑climate refugia in conservation planning.
References
Acebes, P., Lillo, P., Jaime-González, C., 2021. Disentangling lidar contribution in modelling species–habitat structure relationships in terrestrial ecosystems worldwide. a systematic review and future directions. Remote Sensing, 13(17): 3447.
Akresh, M., King, D., McInvale, S., Larkin, J., D’Amato, A., 2023. Effects of forest management on the conservation of bird communities in eastern North America: a meta‐analysis. Ecosphere, 14(1).
Alonso, H., Correia, R., Marques, A., Palmeirim, J., Moreira, F., Silva, J., 2019. Male post‐breeding movements and stopover habitat selection of an endangered short‐distance migrant, the little bustard Tetrax Tetrax. Ibis, 162(2): 279-292.
Barry, K., Schnitzer, S., 2021. Are we missing the forest for the trees? conspecific negative density dependence in a temperate deciduous forest. Plos One, 16(7): e0245639.
Bartholomée, O., Tichit, P., Åström, J., Smith, H., Åstrøm, S., Sydenham, M., Baird, E., 2024. Forest habitat and forest dominated landscapes are associated with bumblebee species with visual traits related to light sensitivity. Biorxiv, 12.
Bernath‐Plaisted, J., Ribic, C., HILLS, W., Townsend, P., Zuckerberg, B., 2023. Microclimate complexity in temperate grasslands: implications for conservation and management under climate change. Environmental Research Letters, 18(6): 064023.
Bernath-Plaisted, J.S., Ribic, C.A., Zuckerberg, B., 2025. Sweating the small stuff: microclimatic exposure and species habitat associations inform climate vulnerability in a grassland songbird community. Biology Letters, 21(1): 20240599.
Berryman, E., Barnard, H., Adams, H., Burns, M., Gallo, E., Brooks, P., 2015. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient. Journal of Geophysical Research Biogeosciences, 120(4): 707-723.
Betts, M., Phalan, B., Frey, S., Rousseau, J., Yang, Z., 2017. Old‐growth forests buffer climate‐sensitive bird populations from warming. Diversity and Distributions, 24(4): 439-447.
Bitani, N., Cordier, C., Smith, D., Smith, Y., Downs, C., 2023. Avian species functional diversity and habitat use: the role of forest structural attributes and tree diversity in the midlands mist belt forests of KwaZulu-Natal, South Africa. Ecology and Evolution, 13(9).
Cannone, N., Sgorbati, S., Guglielmin, M., 2007. Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment, 5(7):360-364.
Champlin, T., Kilgo, J., Gumpertz, M., Moorman, C., 2009. Avian response to microclimate in canopy gaps in a bottomland hardwood forest. Southeastern Naturalist, 8(1): 107-120.
Chardon, N., McBurnie, L., Goodwin, K., Pradhan, K., Lambers, J., Angert, A., 2023. Variable species establishment in response to microhabitat indicates different likelihoods of climate-driven range shifts. Ecography, e07144.
Coulson, B., Freeman, M., Conradie, S., McKechnie, A., 2025. Increases in humidity will intensify lethal hyperthermia risk for birds occupying humid lowlands. Conservation Physiology, 13(1).
Criado, M., Myers‐Smith, I., Bjorkman, A., Lehmann, C., Stevens, N., 2020. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Global Ecology and Biogeography, 29(5): 925-943.
Davis, K., Dobrowski, S., Holden, Z., Higuera, P., Abatzoglou, J., 2018). Microclimatic buffering in forests of the future: the role of local water balance. Ecography, 42(1): 1-11.
Dobrowski, S., 2011. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology, 17(2): 1022-1035.
Eastman, J., Sangermano, F., Oliveira, E., Rogan, J., Anyamba, A., 2013. Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sensing, 5(10): 4799-4818.
Egli, M., Mirabella, A., Sartori, G., Giaccai, D., Zanelli, R., Plötze, M., 2007. Effect of slope aspect on transformation of clay minerals in alpine soils. Clay Minerals, 42(3): 373-398.
Fa, J., Funk, S., 2007. Global endemicity centres for terrestrial vertebrates: an ecoregions approach. Endangered Species Research, 3: 31-42.
Frenne, P., Lenoir, J., Luoto, M., Scheffers, B., Zellweger, F., Aalto, J., Hylander, K., 2021. Forest microclimates and climate change: importance, drivers and future research agenda. Global Change Biology, 27(11): 2279-2297.
Frenne, P., Rodríguez‐Sánchez, F., Coomes, D., Baeten, L., Verstraeten, G., Vellend, M., Verheyen, K., 2013. Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences, 110(46): 18561-18565.
Frey, S., Hadley, A., Betts, M., 2016. Microclimate predicts within‐season distribution dynamics of montane forest birds. Diversity and Distributions, 22(9): 944-959.
Frey, S., Hadley, A., Johnson, S., Schulze, M., Jones, J., Betts, M., 2016. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science Advances, 2(4).
Giberti, G., Arx, G., Giovannelli, A., Toit, B., Unterholzner, L., Bielak, K., Wellstein, C., 2023. The admixture of Quercus sp. in Pinus sylvestris stands influences wood anatomical trait responses to climatic variability and drought events. Frontiers in Plant Science, 14.
Gilliam, F., Hédl, R., Chudomelová, M., McCulley, R., Nelson, J., 2014. Variation in vegetation and microbial linkages with slope aspect in a montane temperate hardwood forest. Ecosphere, 5(5): 1-17.
González‐Gómez, P., Estades, C., Simonetti, J., 2006. Strengthened insectivory in a temperate fragmented forest. Oecologia, 148(1): 137-143.
Gutiérrez‐Jurado, H., Vivoni, E., Cikoski, C., Harrison, J., Bras, R., Istanbulluoglu, E., 2013. On the observed ecohydrological dynamics of a semiarid basin with aspect-delimited ecosystems. Water Resources Research, 49(12): 8263-8284.
He, Y., D’Odorico, P., and Wekker, S., 2015. The role of vegetation–microclimate feedback in promoting shrub encroachment in the Northern Chihuahuan desert. Global Change Biology, 21(6): 2141-2154.
He, Y., D’Odorico, P., Wekker, S., Fuentes, J., Litvak, M., 2010. On the impact of shrub encroachment on microclimate conditions in the Northern Chihuahuan desert. Journal of Geophysical Research Atmospheres, 115(D21).
Jemal, Z., Girma, Z., Mengesha, G., 2020. Bird diversity in nensebo moist afromontane forest fragment, south eastern Ethiopia. The Open Ornithology Journal, 13(1): 1-9.
Kang, S., Lee, D., Kimball, J., 2004. The effects of spatial aggregation of complex topography on hydro ecological process simulations within a rugged forest landscape: development and application of a satellite-based topo climatic model. Canadian Journal of Forest Research, 34(3): 519-530.
Kim, H., McComb, B., Frey, S., Bell, D., Betts, M., 2022. Forest microclimate and composition mediate long‐term trends of breeding bird populations. Global Change Biology, 28(21): 6180-6193.
LeBrun, J., Thogmartin, W., Thompson, F., Dijak, W., Millspaugh, J., 2016. Assessing the sensitivity of avian species abundance to land cover and climate. Ecosphere, 7(6):
Li, X., Burrows, G., Dong, N., Jordan, G., Kattge, J., Lenz, T., Wright, I., 2025. A thinner jacket for frosty and windy climates? global patterns in leaf cuticle thickness and its environmental associations. New Phytologist, 248(1): 107-124.
Lin, H., 2006. Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the shale hills catchment. Vadose Zone Journal, 5(1): 317-340.
Liu, S., Li, R., Deng, Y., Wang, Z., Feng, Y., Han, Z., Mou, C., 2025. RNA-seq revealed the effects of heat stress on different brain regions of Leiocassis longirostris. Frontiers in Physiology, 16.
Lombaerde, E., Vangansbeke, P., Lenoir, J., Meerbeek, K., Lembrechts, J., Rodríguez‐Sánchez, F., Frenne, P., 2022. Maintaining forest cover to enhance temperature buffering under future climate change. The Science of the Total Environment, 810: 151338.
Mancuso, J., Messick, E., Tiegs, S., 2022. Parsing spatial and temporal variation in stream ecosystem functioning. Ecosphere, 13(8).
Menge, J., Magdon, P., Wöllauer, S., Ehbrecht, M., 2023. Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests. Landscape Ecology, 38(4): 903-917.
Moradi, N., Joger, U., Bafti, S., Sharifi, A., Sehhatisabet, M., 2024. Biogeography of the Iranian snakes. Plos One, 19(10): e0309120.
Mulwa, R., Böhning‐Gaese, K., Schleuning, M., 2012. High bird species diversity in structurally heterogeneous farmland in western Kenya. Biotropica, 44(6): 801-809.
Murphy, B., Bradstock, R., Boer, M., Carter, J., Cary, G., Cochrane, M., Bowman, D., 2013. Fire regimes of Australia: a pyro geographic model system. Journal of Biogeography, 40(6): 1048-1058.
Norris, C., Hobson, P., Ibisch, P., 2011. Microclimate and vegetation function as indicators of forest thermodynamic efficiency. Journal of Applied Ecology, 49(3): 562-570.
Padmakumar, V., Joseph, S.P., 2022. Understanding the mangrove-associated avifauna and their conservation status in the Gorai Creek, Western Mumbai, Maharashtra, India: A Recent Study. Environment, 6(3).
Padmakumar, V., Shanthakumar, M., 2023. The impact of human-wildlife conflict on biodiversity conservation in India. Journal of Entomology and Zoology Studies.
Padmakumar, V., Silamabarasan, C., Joseph, S., 2020. Avifaunal diversity of mallathahalli lake in bangalore urban dt. Karnataka, India. The Bioscan, 15(2): 165-167.
Pan, J., Liu, Y., Yang, Y., Cheng, Z., Lan, X., Hu, W., Feng, H., 2022. Slope aspect determines the abundance and composition of nitrogen‐cycling microbial communities in an alpine ecosystem. Environmental Microbiology, 24(8): 3598-3611.
Pandita, S., Kumar, V., Dutt, H., 2019. Environmental variables vis-a-vis distribution of herbaceous tracheophytes on northern sub-slopes in western Himalayan ecotone. Ecological Processes, 8(1).
Pierce, S., Negreiros, D., Cerabolini, B., Kattge, J., Dı́az, S., Kleyer, M., Tampucci, D., 2016. A global method for calculating plant CSR ecological strategies applied across biomes world‐wide. Functional Ecology, 31(2): 444-457.
Pradhan, K., Ettinger, A., Case, M., Lambers, J., 2023. Applying climate change refugia to forest management and old‐growth restoration. Global Change Biology, 29(13): 3692-3706.
R Arx, G., Pannatier, E., Thimonier, A., Rebetez, M., 2013. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. Journal of Ecology, 101(5): 1201-1213.
Regüés, D., Martí‐Bono, C., Nadal‐Romero, E., 2006. Badlands dynamics in the central Pyrenees: temporal and spatial patterns of weathering processes. Earth Surface Processes and Landforms, 32(6): 888-904.
Roonjho, A., Muhamad, R., Omar, D., 2020. Determination of lethal and feeding deterrent activities of saponin from Phaleria macrocarpa against Pomacea maculata. The Journal of Animal and Plant Sciences, 31(4): 1070-1077.
Rotenberg, E., Yakir, D., 2010. Distinct patterns of changes in surface energy budget associated with forestation in the semiarid region. Global Change Biology, 17(4): 1536-1548.
Sankey, J., Law, D., Breshears, D., Munson, S., Webb, R., 2013. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport. Geophysical Research Letters, 40(9): 1724-1728.
Schall, P., Heinrichs, S., Ammer, C., Ayasse, M., Boch, S., Buscot, F., Goßner, M., 2020. Can multi‐taxa diversity in European beech forest landscapes be increased by combining different management systems? Journal of Applied Ecology, 57(7): 1363-1375.
Schwartz, T., Genouville, A., Besnard, A., 2020. Increased microclimatic variation in artificial nests does not create ecological traps for a secondary cavity breeder, the European roller. Ecology and Evolution, 10(24): 13649-13663.
Smith, D., Willows‐Munro, S., Smith, Y., Downs, C., 2021. Does anthropogenic fragmentation selectively filter avian phylogenetic diversity in a critically endangered forest system? Bird Conservation International, 32(4): 674-686.
Sørensen, R., Zinko, U., and Seibert, J., 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1): 101-112.
Spicer, M., Mellor, H., Carson, W., 2020. Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology, 101(4).
Stark, J., Fridley, J., 2022. Microclimate‐based species distribution models in complex forested terrain indicate widespread cryptic refugia under climate change. Global Ecology and Biogeography, 31(3): 562-575.
Suggitt, A., Gillingham, P., Hill, J., Huntley, B., Kunin, W., Roy, D., Thomas, C., 2010. Habitat microclimates drive fine‐scale variation in extreme temperatures. Oikos, 120(1): 1-8.
Sunday, J., Bennett, J., Calosi, P., Clusella‐Trullas, S., Gravel, S., Hargreaves, A., Morales‐Castilla, I., 2019. Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B Biological Sciences, 374(1778): 20190036.
Svancara, L., Abatzoglou, J., Waterbury, B., 2019. Modeling current and future potential distributions of milkweeds and the monarch butterfly in Idaho. Frontiers in Ecology and Evolution, 7.
Tewksbury, J., Levey, D., Haddad, N., Sargent, S., Orrock, J., Weldon, A., Townsend, P., 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. Proceedings of the National Academy of Sciences, 99(20): 12923-12926.
Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M., Schwager, M., Jeltsch, F., 2003. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31(1): 79-92.
Thorne, J., Boynton, R., Hollander, A., Flint, L., Flint, A., Urban, D., 2023. The contribution of microrefugia to landscape thermal inertia for climate‐adaptive conservation strategies. Earth S Future, 11(6).
Ulyshen, M., Adams, C., Adams, J., Adams, S.B., Bland, M., Bragg, D.C., Young, A.D., 2024. Spatiotemporal patterns of forest pollinator diversity across the southeastern United States. Diversity and Distributions, 30(8): e13869.
Wolfe, J., Luther, D., Jirinec, V., Collings, J., Johnson, E., Bierregaard, R., Stouffer, P., 2025. Climate change aggravates bird mortality in pristine tropical forests. Science Advances, 11(5).
Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S., Wulf, M., Frenne, P., 2019. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Global Ecology and Biogeography, 28(12): 1774-1786.
Zellweger, F., Frenne, P., Lenoir, J., Rocchini, D., Coomes, D., 2019. Advances in microclimate ecology arising from remote sensing. Trends in Ecology and Evolution, 34(4): 327-341.
Zhu, Y., Britnell, J., Shi, J., Buuveibaatar, B., Shultz, S., 2025. Anthropogenic pressures lead to different patterns of niche contraction and protected area cover in three species Procapra gazelles on qinghai tibet plateau and mongolia. Diversity and Distributions, 31(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ISPEC JOURNAL OF SCIENCE INSTITUTE

This work is licensed under a Creative Commons Attribution 4.0 International License.
