An alternative evaluation of the integral of Bessel-Gauss Beam

Authors

DOI:

https://doi.org/10.5281/zenodo.15777940

Keywords:

Hankel Transforms, Bessel Functions, Convolution Theorem

Abstract

The integral solution used to obtain the Bessel-Gauss beam is revisited using the analytical method. It is seen that an alternative form of representation of the Bessel-Gauss beam is achieved other than in the literature.

References

Basdemir, H.D., 2024. Diffraction of a pseudo nondiffracting Bessel beam by a circular perfect electromagnetic conductor disk. Journal of the Optical Society of America A. 41.

Brzobohatý, O., Cižmár, T., Zemánek, P., 2008. High quality quasi-Bessel beam generated by round-tip axicon. Opt Express. 16.

Balanis, C.A., 2012. Advanced engineering electromagnetics: second edition. Wiley, NY.

Chu, X., 2012. Analytical study on the self-healing property of Bessel beam. European Physical Journal D, 66.

Durnin, J., 1987. Exact solutions for nondiffracting beams I The scalar theory. Journal of the Optical Society of America A. 4.

Gori, F., Guattari, G., Padovani, C., 1987. Bessel-Gauss beams. Opt. Commun, 64.

Gradshteyn, I.S. and Ryzhik, I.M., 2007. Table of integrals, series, and products: Seventh edition. AcademicPress, Amsterdam.

Williams, W.B., Pendry, J.B., 2005. Generating Bessel beams by use of localized modes. Journal of the Optical Society of America A. 22.

Published

2025-06-30

How to Cite

BAŞDEMİR, H. D., & ERDEN, F. (2025). An alternative evaluation of the integral of Bessel-Gauss Beam. ISPEC JOURNAL OF SCIENCE INSTITUTE, 4(1), 57–60. https://doi.org/10.5281/zenodo.15777940

Issue

Section

Articles