Evaluation of Recent Studies on Morphology Modulation of Seawater Electrocatalysts on Seawater Splitting

Authors

  • Kübra KÖŞE KAYA Department of Chemical Engineering, Faculty of Natural Sciences and Engineering, Sivas Science and Technology University, 58100, Sivas, Turkey https://orcid.org/0000-0001-9868-7442

DOI:

https://doi.org/10.5281/zenodo.12569677

Keywords:

Seawater Splitting, water electrolyzer, tailored morphologies, hydrogen

Abstract

Electrocatalytic water splitting is an advanced way to obtain energy to produce green, renewable hydrogen (H2). However, its widespread application is hampered by the scarcity of freshwater resources. With its abundant reserves, seawater desalination offers a potentially viable alternative for large-scale H2 production. However, the complexity of seawater poses additional challenges for electrocatalytic processes. This evaluation assesses the processes and difficulties of splitting seawater through electrocatalysis to produce H2 and emphasizes recent progress in enhancing the efficiency of electrocatalysts in seawater. It also offers suggestions for future research paths to advance this technology.

References

Altuntas, I., Kocak, M. N., Yolcu, G., Budak, H. F., Kasapoğlu, A. E., Horoz, S., Gür, E., & Demir, I. (2021). Influence of the PALE growth temperature on quality of MOVPE grown AlN/Si (111). Materials Science in Semiconductor Processing, 127. https://doi.org/10.1016/j.mssp.2021.105733

Anantharaj, S., & Aravindan, V. (2020). Developments and Perspectives in 3d Transition-Metal-Based Electrocatalysts for Neutral and Near-Neutral Water Electrolysis. In Advanced Energy Materials (Vol. 10, Issue 1). Wiley-VCH Verlag. https://doi.org/10.1002/aenm.201902666

Bakır, R., Orak, C., & Yüksel, A. (2024). Optimizing hydrogen evolution prediction: A unified approach using random forests, lightGBM, and Bagging Regressor ensemble model. International Journal of Hydrogen Energy, 67, 101–110. https://doi.org/10.1016/j.ijhydene.2024.04.173

Carneiro-Neto, E. B., Lopes, M. C., & Pereira, E. C. (2016). Simulation of interfacial pH changes during hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 765, 92–99. https://doi.org/10.1016/j.jelechem.2015.09.029

Cheng, Y. F., & Niu, L. (2007). Mechanism for hydrogen evolution reaction on pipeline steel in near-neutral pH solution. Electrochemistry Communications, 9(4), 558–562. https://doi.org/10.1016/j.elecom.2006.10.035

Chen, H., Luo, X., Huang, S., Yu, F., Li, D., & Chen, Y. (2023). Phosphorus-doped activated carbon as a platinum-based catalyst support for electrocatalytic hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 948. https://doi.org/10.1016/j.jelechem.2023.117820

Chen, I. W. P., Hsiao, C. H., Huang, J. Y., Peng, Y. H., & Chang, C. Y. (2019). Highly Efficient Hydrogen Evolution from Seawater by Biofunctionalized Exfoliated MoS 2 Quantum Dot Aerogel Electrocatalysts That Is Superior to Pt. ACS Applied Materials and Interfaces, 11(15), 14159–14165. https://doi.org/10.1021/acsami.9b02582

Chen, X., Zhao, J. Y., Zhang, W. S., & Wang, X. M. (2024). Cactus-like NC/CoxP electrode enables efficient and stable hydrogen evolution for saline water splitting. Xinxing Tan Cailiao/New Carbon Materials, 39(1), 152–163. https://doi.org/10.1016/S1872-5805(24)60824-3

Cheshideh, H., Chen, H. Y., Liao, K. W., Wang, K. C., Chen, G. C., Huang, H. C., & Wang, C. H. (2023). Reactive surface intermediates over Ni-grafted TiO2 nanotube arrays towards hydrogen evolution reaction in alkaline and chloride media. International Journal of Hydrogen Energy, 48(81), 31479–31490. https://doi.org/10.1016/j.ijhydene.2023.04.305

Dong, W. J., Xiao, Y., Yang, K. R., Ye, Z., Zhou, P., Navid, I. A., Batista, V. S., & Mi, Z. (2023). Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-35782-z

Ece, M. Ş., Ekinci, A., Kutluay, S., Şahin, Ö., & Horoz, S. (2021). Facile synthesis and comprehensive characterization of Ni-decorated amine groups-immobilized Fe3O4@SiO2 magnetic nanoparticles having enhanced solar cell efficiency. Journal of Materials Science: Materials in Electronics, 32(13), 18192–18204. https://doi.org/10.1007/s10854-021-06361-z

Fan, R., Liu, C., Li, Z., Huang, H., Feng, J., Li, Z., & Zou, Z. (2024). Ultrastable electrocatalytic seawater splitting at ampere-level current density. Nature Sustainability, 7(2), 158–167. https://doi.org/10.1038/s41893-023-01263-w

Hemmati, K., Kumar, A., Jadhav, A. R., Moradlou, O., Moshfegh, A. Z., & Lee, H. (2023). Nanorod Array-Based Hierarchical NiO Microspheres as a Bifunctional Electrocatalyst for a Selective and Corrosion-Resistance Seawater Photo/Electrolysis System. ACS Catalysis, 13(8), 5516–5528. https://doi.org/10.1021/acscatal.3c00510

Horoz, S., & Sahin, O. (2017). Investigations of structural, optical, and photovoltaic properties of Fe-alloyed ZnS quantum dots. Journal of Materials Science: Materials in Electronics, 28(13), 9559–9565. https://doi.org/10.1007/s10854-017-6703-2

Huang, Y., Seo, K. D., Jannath, K. A., Park, D. S., & Shim, Y. B. (2022). Heteroatoms doped carbon decorated with tiny amount Pt nanoparticles as a bifunctional catalyst for hydrogen and chlorine generation from seawater. Carbon, 196, 621–632. https://doi.org/10.1016/j.carbon.2022.05.017

Ishaq, H., Dincer, I., & Crawford, C. (2022). A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 47(62), 26238–26264. https://doi.org/10.1016/j.ijhydene.2021.11.149

Jin, L., Zhao, H., Wang, Z. M., & Rosei, F. (2021). Quantum Dots-Based Photoelectrochemical Hydrogen Evolution from Water Splitting. In Advanced Energy Materials (Vol. 11, Issue 12). John Wiley and Sons Inc. https://doi.org/10.1002/aenm.202003233

Li, J., Sun, J., Li, Z., & Meng, X. (2022). Recent advances in electrocatalysts for seawater splitting in hydrogen evolution reaction. In International Journal of Hydrogen Energy (Vol. 47, Issue 69, pp. 29685–29697). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2022.06.288

Liu, J., Duan, S., Shi, H., Wang, T., Yang, X., Huang, Y., Wu, G., & Li, Q. (2022). Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. In Angewandte Chemie - International Edition (Vol. 61, Issue 45). John Wiley and Sons Inc. https://doi.org/10.1002/anie.202210753

Liu, J., Song, X., Gao, S., Chen, F., Lang, X., Zhang, T., Lv, Z., & Ma, G. (2024a). Collaborative coupling catalytic interface enabling efficient hydrogen evolution in universal-pH electrolytes and seawater. International Journal of Hydrogen Energy, 49, 1625–1632. https://doi.org/10.1016/j.ijhydene.2023.11.128

Liu, J., Song, X., Gao, S., Chen, F., Lang, X., Zhang, T., Lv, Z., & Ma, G. (2024b). Collaborative coupling catalytic interface enabling efficient hydrogen evolution in universal-pH electrolytes and seawater. International Journal of Hydrogen Energy, 49, 1625–1632. https://doi.org/10.1016/j.ijhydene.2023.11.128

Liu, Y., Hu, X., Huang, B., & Xie, Z. (2019). Surface Engineering of Rh Catalysts with N/S-Codoped Carbon Nanosheets toward High-Performance Hydrogen Evolution from Seawater. ACS Sustainable Chemistry and Engineering, 7(23), 18835–18843. https://doi.org/10.1021/acssuschemeng.9b03720

Lund, J. W., & Boyd, T. L. (2016). Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 60, 66–93. https://doi.org/10.1016/j.geothermics.2015.11.004

Onat, E., Şahin, Ö., İzgi, M. S., & Horoz, S. (2021). An efficient synergistic Co@CQDs catalyst for hydrogen production from the hydrolysis of NH3BH3. Journal of Materials Science: Materials in Electronics, 32(23), 27251–27259. https://doi.org/10.1007/s10854-021-07094-9

Orak, C., & Yüksel, A. (2021). Photocatalytic Hydrogen Energy Evolution from Sugar Beet Wastewater. ChemistrySelect, 6(43), 12266–12275. https://doi.org/10.1002/slct.202103342

Orak, C., & Yüksel, A. (2022). Comparison of photocatalytic performances of solar-driven hybrid catalysts for hydrogen energy evolution from 1,8–Diazabicyclo[5.4.0]undec-7-ene (DBU) solution. International Journal of Hydrogen Energy, 47(14), 8841–8857. https://doi.org/10.1016/j.ijhydene.2021.12.254

Poudel, M. B., Logeshwaran, N., Prabhakaran, S., Kim, A. R., Kim, D. H., & Yoo, D. J. (2024). Low-Cost Hydrogen Production from Alkaline/Seawater over a Single-Step Synthesis of Mo3Se4-NiSe Core–Shell Nanowire Arrays. Advanced Materials, 36(5). https://doi.org/10.1002/adma.202305813

Sansaniwal, S. K., Sharma, V., & Mathur, J. (2018). Energy and exergy analyses of various typical solar energy applications: A comprehensive review. In Renewable and Sustainable Energy Reviews (Vol. 82, pp. 1576–1601). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.07.003

Saquib, M., Arora, P., & Bhosale, A. C. (2024). Nickel molybdenum selenide on carbon cloth as an efficient bifunctional electrocatalyst for alkaline seawater splitting. Fuel, 365. https://doi.org/10.1016/j.fuel.2024.131251

Shen, X., Li, H., Ma, T., Jiao, Q., Zhao, Y., Li, H., & Feng, C. (2024). Construction of Heterojunction-Rich Metal Nitrides Porous Nanosheets Electrocatalyst for Alkaline Water/Seawater Splitting at Large Current Density. Small. https://doi.org/10.1002/smll.202310535

Skúlason, E., Tripkovic, V., Björketun, M. E., Gudmundsdóttir, S., Karlberg, G., Rossmeisl, J., Bligaard, T., Jónsson, H., & Nørskov, J. K. (2010). Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. Journal of Physical Chemistry C, 114(42), 18182–18197. https://doi.org/10.1021/jp1048887

Wang, H., Chen, L., Tan, L., Liu, X., Wen, Y., Hou, W., & Zhan, T. (2022). Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. Journal of Colloid and Interface Science, 613, 349–358. https://doi.org/10.1016/j.jcis.2022.01.044

Wang, S., Wang, M., Liu, Z., Liu, S., Chen, Y., Li, M., Zhang, H., Wu, Q., Guo, J., Feng, X., Chen, Z., & Pan, Y. (2022). Synergetic Function of the Single-Atom Ru-N4Site and Ru Nanoparticles for Hydrogen Production in a Wide pH Range and Seawater Electrolysis. ACS Applied Materials and Interfaces, 14(13), 15250–15258. https://doi.org/10.1021/acsami.2c00652

Wang, X., Zhou, X., Li, C., Yao, H., Zhang, C., Zhou, J., Xu, R., Chu, L., Wang, H., Gu, M., Jiang, H., & Huang, M. (2022). Asymmetric Co-N3P1 Trifunctional Catalyst with Tailored Electronic Structures Enabling Boosted Activities and Corrosion Resistance in an Uninterrupted Seawater Splitting System. Advanced Materials, 34(34). https://doi.org/10.1002/adma.202204021

Wu, D., Liu, B., Li, R., Chen, D., Zeng, W., Zhao, H., Yao, Y., Qin, R., Yu, J., Chen, L., Zhang, J., Li, B., & Mu, S. (2023). Fe-Regulated Amorphous-Crystal Ni(Fe)P2 Nanosheets Coupled with Ru Powerfully Drive Seawater Splitting at Large Current Density. Small, 19(36). https://doi.org/10.1002/smll.202300030

Xu, G. R., Zhang, N., Sun, Q., Zhang, W., Wu, Z., & Wang, L. (2023). Self-supportive Pd0.2Ni58Fe30O11.8 nanowires for solar-driven self-powered water/seawater splitting with large current density. Chemical Engineering Journal, 476. https://doi.org/10.1016/j.cej.2023.146778

Yang, C., Jiang, X., Li, Y., Zeng, J., & Liang, H. P. (2024). Construction of S-modified Amorphous Fe(OH)3 on NiSe Nanowires as Bifunctional Electrocatalysts for Efficient Seawater Splitting. ACS Applied Nano Materials, 7(4), 3960–3967. https://doi.org/10.1021/acsanm.3c05580

Yang, X., Xiao, Y. X., Chen, J. B., Yu, F., Tian, G., Pu, F. F., Zhang, S., de Torresi, S. I. C., Symes, M. D., Janiak, C., & Yang, X. Y. (2023). Surface controllable anchoring of Cu onto nanostructured PtNi for efficient electrochemical hydrogen evolution from seawater. Science China Materials, 66(10), 3887–3894. https://doi.org/10.1007/s40843-023-2566-y

Yu, L., Zhu, Q., Song, S., McElhenny, B., Wang, D., Wu, C., Qin, Z., Bao, J., Yu, Y., Chen, S., & Ren, Z. (2019). Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13092-7

Zhang, B., Xu, W., Liu, S., Chen, X., Ma, T., Wang, G., Lu, Z., & Sun, J. (2021). Enhanced interface interaction in Cu2S@Ni core-shell nanorod arrays as hydrogen evolution reaction electrode for alkaline seawater electrolysis. Journal of Power Sources, 506. https://doi.org/10.1016/j.jpowsour.2021.230235

Zhang, H., Luo, Y., Chu, P. K., Liu, Q., Liu, X., Zhang, S., Luo, J., Wang, X., & Hu, G. (2022). Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. In Journal of Alloys and Compounds (Vol. 922). Elsevier Ltd. https://doi.org/10.1016/j.jallcom.2022.166113

Zhang, J., Hu, W., Cao, S., & Piao, L. (2020). Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. In Nano Research (Vol. 13, Issue 9, pp. 2313–2322). Tsinghua University Press. https://doi.org/10.1007/s12274-020-2880-z

Zhang, K., Yang, E., Zheng, Y., Yu, D., Chen, J., & Lou, Y. (2023). Robust and hydrophilic Mo-NiS@NiTe core-shell heterostructure nanorod arrays for efficient hydrogen evolution reaction in alkaline freshwater and seawater. Applied Surface Science, 637. https://doi.org/10.1016/j.apsusc.2023.157977

Zhao, Z., Zhao, H., Du, X., & Zhang, X. (2024). Controllable preparation of Cu2S@Ni3S2 grown on nickel foam as efficient seawater splitting electrocatalyst. International Journal of Hydrogen Energy, 49, 1528–1537. https://doi.org/10.1016/j.ijhydene.2023.10.229

Published

2024-06-28

How to Cite

KÖŞE KAYA, K. (2024). Evaluation of Recent Studies on Morphology Modulation of Seawater Electrocatalysts on Seawater Splitting. ISPEC JOURNAL OF SCIENCE INSTITUTE, 3(1), 19–33. https://doi.org/10.5281/zenodo.12569677

Issue

Section

Articles