ISPEC Fen Bilimleri Enstitiisii Dergisi, 4(2):202-209, 2025 _
ISPEC Journal of Science Institute, 4(2):202-209, 2025 @08
DOI: https://doi.org/10.5281/zen0do.18061813 T

Applications of Artificial Intelligence and Remote Sensing in Environmental and
Agricultural Engineering: A Comprehensive Review

Fathalah ELWAHAB "1 Rabea ZIRI 71, Hassan BOUKITA 1, Mohamed SEDK] =2

1Plant and Animal Production and Agro-Industry Laboratory, Faculty of Science, 1bn Tofail University,
B.P 133, Kenitra, 14000, Morocco.

2 Regional Center of Agricultural Research of Kenitra, B.P. 257, 14000 Kenitra, Morocco

Corresponding author: fathalah.elwahab@uit.ac.ma

Abstract Review Article
Acrtificial Intelligence (Al) and remote sensing technologies have
transformed the landscape of environmental and agricultural
engineering. These technologies enable the monitoring, analysis, and
prediction of complex natural processes at multiple spatial and
temporal scales. This review summarizes current advances in the
integration of Al algorithms and remote sensing data for precision

agriculture, environmental monitoring, and resource management. Avrticle History
Emphasis is placed on the use of machine learning (ML) and deep Received :09.11.2025
learning (DL) models for crop yield prediction, soil salinity Accepted :18.12.2025

mapping, water resource optimization, and climate impact
assessment. Challenges related to data quality, computational cost,
and model generalization are discussed. Finally, the paper highlights
future directions for Al-driven sustainable engineering applications.
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1. Introduction

In recent decades, global challenges such as climate change, population growth, and
resource scarcity have driven the demand for innovative solutions in environmental and
agricultural engineering. Artificial Intelligence (Al) and remote sensing (RS) have emerged
as key technologies enabling data-driven decision-making in complex natural systems (Wang
etal., 2022; Ma et al., 2023). The integration of these tools allows for the efficient monitoring
of ecosystems, the optimization of irrigation and fertilization practices, and the prediction of
crop yields under variable climatic conditions (Rowley et al., 2023).

Al complements remote sensing by offering advanced computational approaches for
analyzing large and complex datasets. Machine learning (ML) and deep learning (DL)
algorithms can identify hidden patterns, make predictions, and automate feature extraction
from spectral imagery with remarkable accuracy (Kamilaris and Prenafeta-Boldu, 2018).
Recent research has demonstrated how convolutional neural networks (CNNs) and random
forest models can accurately classify crop types, estimate biomass, and detect stress factors
such as nutrient deficiency or disease (Espinel et al., 2024). Similarly, Al-driven models are
increasingly used in environmental monitoring to predict soil erosion, flood risks, and water
quality variations (Rana et al., 2023).

The convergence of Al and RS technologies represents a paradigm shift toward
precision and sustainability in resource management. These tools enable real-time monitoring
and forecasting, allowing decision-makers to respond proactively to environmental
challenges. Moreover, their integration supports the achievement of several United Nations
Sustainable Development Goals (SDGs), including food security, clean water management,
and climate resilience (FAO, 2022).

The objective of this review is to provide a comprehensive overview of recent advances
in the use of Al and remote sensing for sustainable environmental and agricultural
management, emphasizing their technical applications, challenges, and future perspectives.
Agricultural and environmental systems are inherently dynamic and multifactorial, influenced
by spatial, temporal, and climatic variability. Traditional monitoring and management
methods often rely on manual observations or local measurements, which are time-
consuming, costly, and limited in scale. In contrast, remote sensing technologies—through
satellite, airborne, or unmanned aerial vehicle (UAV) platforms—offer the capability to
collect high-resolution data across large areas and multiple timeframes (Souissi et al., 2022).
These data streams provide crucial insights into soil moisture dynamics, vegetation growth,
and land-use changes, forming the foundation for intelligent modeling and decision support.

Despite the growing body of research, several challenges persist. Data heterogeneity,
model interpretability, and the scarcity of ground-truth datasets limit the robustness and
transferability of AI-RS models across regions and crop systems. Therefore, this review aims
to (i) summarize the current state of Al and remote sensing applications in environmental and
agricultural engineering, (ii) identify key challenges and research gaps, and (iii) propose future
directions for developing sustainable and scalable solutions.

2. Artificial Intelligence in Environmental and Agricultural Engineering

In recent years, Artificial Intelligence (Al) has emerged as a powerful tool in
environmental and agricultural engineering, driving innovation and improving decision-
making processes. Al techniques, such as machine learning, deep learning, and neural
networks, are increasingly applied to monitor and analyze complex natural systems, including
soil moisture, crop growth, and land-use changes. When combined with remote sensing (RS)
technologies, Al enables precision agriculture practices, such as optimized irrigation, targeted
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fertilization, and accurate crop Yyield prediction under variable climatic conditions.
Additionally, Al-based models are being used in environmental monitoring to predict soil
erosion, assess flood risks, and evaluate water quality variations, supporting sustainable
resource management and climate resilience. These advancements highlight the potential of
Al to transform traditional agricultural and environmental practices, contributing to food
security, ecosystem conservation, and climate adaptation.

3. Remote Sensing Technologies and Data Sources

Remote sensing (RS) is the process of acquiring information about a specific object or
area without direct physical contact, typically through the detection of electromagnetic
radiation reflected or emitted by the target. This technology generates data in image form,
enabling detailed monitoring and physical analysis of natural and agricultural systems. RS has
become an essential tool for observing the Earth and other planetary bodies from distant
locations, such as space, using satellites, as well as from unmanned aerial vehicles (UAVS)
and ground-based sensors. Modern RS systems, including multispectral, hyperspectral, and
radar sensors, provide high-resolution information on soil moisture, vegetation health, land
use, and crop conditions. When combined with geographic information systems (GIS) and
advanced analytics, these data allow for precise mapping, trend analysis, and predictive
modeling. Consequently, RS supports a wide range of applications in agriculture,
environmental monitoring, disaster management, and climate adaptation, facilitating informed
decision-making and sustainable resource manageme
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Figure 1. Principles of Remote Sensing with sequential steps (Sarker et al., 2025)

4. Integrated AI-RS Applications in Agriculture and Environment

The integration of Artificial Intelligence (Al) with Remote Sensing (RS) technologies
has significantly advanced agriculture and environmental management. By combining the
spatial and temporal coverage provided by RS with the predictive capabilities of Al, it is
possible to monitor and model complex natural systems with high accuracy. In agriculture,
AI-RS integration enables crop type classification, biomass estimation, disease and pest
detection, and vyield prediction, facilitating precision farming practices and resource
optimization (Katkani et al., 2022; Espinel et al., 2024). Similarly, in environmental
applications, these technologies support the assessment of soil health, water quality, land-use
change, and ecosystem dynamics, while also aiding in the prediction of natural hazards such
as floods and droughts (Boukita et al., 2025). The synergy of Al and RS improves the
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efficiency and timeliness of data-driven decisions, contributing to sustainable resource
management, climate adaptation strategies, and food security.

5. Crop Monitoring and Yield Prediction

Crop monitoring and yield prediction are among the most prominent applications of
integrating Remote Sensing (RS) and Artificial Intelligence (Al) in modern agriculture. High-
resolution satellite and UAV imagery allow continuous observation of vegetation dynamics,
canopy structure, and photosynthetic performance, while machine learning and deep learning
models enable the extraction of meaningful patterns for crop growth assessment. These
techniques facilitate early detection of stress factors such as drought, nutrient deficiency, and
disease, thereby improving decision-making for irrigation, fertilization, and pest
control(Elwahab et al., 2023). Recent advancements demonstrate the effectiveness of
combining multispectral and radar data with Al algorithms to estimate biomass and predict
yields with high accuracy across diverse agricultural landscapes (Chen et al., 2023). Similarly,
machine learning models trained on time-series satellite data have been shown to enhance
yield forecasting at regional and national scales (Kerner et al., 2022). UAV-based
hyperspectral imaging coupled with convolutional neural networks (CNNs) has further
improved the capacity to detect stress responses and estimate crop productivity in real time
(Ohyama et al., 2023). Together, these AI-RS approaches contribute to precision agriculture
strategies aimed at increasing productivity, resource efficiency, and climate resilience.
Remote sensing imagery such as RGB (Red—Green—Blue) and NDVI (Normalized Difference
Vegetation Index) provides essential spatial information for monitoring crop development and
predicting yield.For better clarity, several examples of NDVI and RGB images corresponding
to the largest analysis window (40 m) are shown in Fig. 2, along with their associated yield
values, where the color bar indicates the yield range. Images sharing the same identifier
originate from the same field location. In this setup, the network’s prediction target is defined
as the mean yield within the analysis window corresponding to each input image. It is also
worth noting that the RGB and NDVI models were trained independently to avoid errors
caused by potential spatial misalignment between the two imagery datasets. This separate
training strategy allows for a direct comparison of model performance and supports evaluating
which data source, RGB or NDVI, offers more accurate yield predictions.
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Figure 2. Visualizations of NDVI and RGB input images and yield targets. The identification numbers
above the images denote the distinct area from which the images were extracted (Nevavuori et al.,
2019)
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6. Soil Salinity and Water Quality Assessment

Salinity represents one of the most critical constraints in agricultural production,
particularly in arid and semi-arid regions where evapotranspiration rates are high and
irrigation practices often lead to salt accumulation in soils. Recent advances in remote sensing
have enabled the development of satellite-derived salinity indices, such as the Normalized
Difference Salinity Index (NDSI), which provide large-scale and continuous monitoring of
salinization dynamics (Elhag, 2019). The integration of these indices with machine learning
models, including support vector machines and random forests, has significantly improved
the accuracy of soil salinity assessment and spatial prediction (Mazarei et al., 2021).
Additionally, artificial intelligence is increasingly utilized to evaluate water quality in
reservoirs and irrigation systems. Remote sensing reflectance data combined with regression
or neural network models allow the estimation of key water quality parameters such as
chlorophyll-a, turbidity, and dissolved organic matter, supporting sustainable water resource
management (Gholizadeh et al., 2020). To summarize the key indicators and methods used
for soil salinity and water quality assessment, Table 1 presents the main parameters,
measurement methods, Al/RS tools, and relevant references.

Table 1. Key indicators for soil salinity and water quality assessment using Al and remote sensing.

Parameter /

Measurement

Remote Sensing / Al

Indicator Method Tool Reference Observations / Notes
NDSI (Normalized . . -
Soil Salinity Soil sampling & Difference Salinity Hermos.|||a et _ngh sallmty detected
. - al., 2019; Sothe | in arid areas; correlated
(EC, dS/m) laboratory analysis Index), Machine .
; . etal., 2021 with poor crop growth
Learning regression
Soil Moisture Time-domain Sate_lllte—bgseq soil Merchant et al., Spatial variability
(%) re_flectqmetry, moisture indices, 2022 captured with RS data
gravimetric method Neural Networks
Water Quality Laboratory Regr_essmn m(_)dels Mazarei et al., AI. pr_edlc'gs seasona!
. . using satellite variations in reservoir
(TDS, mg/L) chemical analysis 2021 ;
reflectance water quality
lsmaili et al Important for assessing
Soil pH Laboratory analysis | Spectral RS data + ML 2023 N soil suitability for
crops
Sodium Al prediction models Indicates potential
Adsorption t:ltézzzgz using NDSI & field Elhggle; al., sodicity issues in
Ratio (SAR) data irrigation water

7. Climate Change and Resource Management

Climate change poses significant challenges to global agriculture, water resources, and

ecosystem management. Rising temperatures, altered precipitation patterns, and increased
frequency of extreme events such as droughts and floods threaten crop productivity, soil
health, and water availability. Effective resource management strategies are essential to
mitigate these impacts and ensure sustainable food and water security (Elwahab et al., 2025).
Recent advances in remote sensing and artificial intelligence (Al) have enabled the monitoring
of climate-related changes in real time, allowing for better prediction of crop yields, water
stress, and soil degradation. Integrating Al-driven models with historical climate and
environmental data facilitates adaptive management practices, such as optimized irrigation
scheduling, selection of climate-resilient crop varieties, and targeted soil conservation
measure. Moreover, such approaches support policymakers and farmers in making informed
decisions to enhance resilience to climate variability and sustain natural resource use over the
long term (Mazarei et al., 2021; FAQ, 2022).
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8. Challenges and Limitations

Despite their significant potential, integrated AI-RS systems face several challenges
and limitations. One major issue is data heterogeneity, as information collected from different
Sensors, regions, or crop types can vary in resolution, format, and quality, complicating model
training and analysis. Limited availability of ground-truth data further constrains the accuracy
and validation of predictions. High computational costs and the need for specialized hardware
can impede large-scale implementation, especially in resource-limited contexts. Moreover,
model transferability across different geographic regions and crop varieties remains a
challenge, limiting the generalization of results. Ethical considerations, such as data privacy
and the environmental impact of energy-intensive computations, must also be addressed to
ensure sustainable and responsible deployment of Al in agricultural and environmental
applications. Addressing these challenges is critical to unlocking the full potential of AI-RS
systems for precision agriculture and environmental monitoring. Future research in
environmental and agricultural monitoring should prioritize the integration of emerging
technologies such as Internet of Things (IoT) sensors, edge computing, and digital twin
frameworks to enable more accurate and real-time data acquisition and decision-making. The
adoption of explainable artificial intelligence (XAI) methods can improve model
interpretability, allowing experts to better understand and trust the predictions generated by
Al systems. Additionally, the development and dissemination of open-access datasets, as well
as collaborative platforms, will be crucial for democratizing Al tools and fostering innovation
in sustainable agriculture and environmental management. Combining these approaches has
the potential to enhance resilience to climate variability, optimize resource use, and support
informed policy and management strategies for the future.

9. Conclusion

Artificial intelligence (Al) and remote sensing (RS) technologies have demonstrated
remarkable potential in transforming environmental and agricultural engineering practices.
Their integration allows for high-precision monitoring of crops, early detection of stress factors,
optimized irrigation and fertilization, and improved prediction of yields under variable climatic
conditions. Beyond agriculture, AI-RS systems support environmental management by
assessing soil health, water quality, land-use changes, and ecosystem dynamics, thereby
contributing to climate adaptation and natural resource sustainability. The continued evolution
of data acquisition technologies, including high-resolution satellites, 10T sensors, and UAVS,
coupled with advances in machine learning and explainable Al, is expected to enhance the
accuracy, interpretability, and real-time applicability of these systems. Collaborative platforms
and open-access datasets will further democratize access to Al tools, enabling researchers,
policymakers, and farmers to make informed decisions and implement sustainable practices at
regional and global scales. Overall, the synergistic use of Al and RS provides a promising
pathway to address pressing global challenges such as food security, water scarcity, and climate
change mitigation. By fostering interdisciplinary research and leveraging cutting-edge
technologies, these approaches are poised to play a central role in building resilient and
sustainable agricultural and environmental systems for the future.
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