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Abstract  

In this paper, the line integral representations of fringe field expressions are derived 

analytically and generalized using the unit vectors of the related edge contours. The derived 

expressions are applied to the perfectly electric conducting (PEC) parabolic reflector 

geometry to investigate the exact diffracted fields. 
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1. Introduction    

Young first proposed the physical meaning of the scattered fields from a knife edge by 

superpositioning the incident and edge-diffracted fields (Rubinowicz, 1957). Although his 

valuable idea was allowed to show the interference characteristic of the scattered fields, he 

could not base it on the mathematical basis of this explanation. Therefore, this proposal was 

dominated by the Fresnel's theory of diffraction. Later on, Maggi and Rubinowitz 

independently derived the mathematical expressions, which are realized in Young's idea using 

Kirchoff's integral formula (Maggi, 1888; Rubinowicz, 1917). The obtained line integrals are 

the reduction forms of the surface integrals to the line integrals, and the evaluation of these 

integrals directly gives rise to the edge-diffracted fields. This theory leads to investigating the 

diffracted fields independently from the scattered fields. However, Ganci's works on the half 

plane showed that the solution of the Maggi-Rubinowitz (boundary diffraction wave, BDW) 

gives an approximate solution like physical optics (PO) (Ganci, 1996; Ganci, 1995). PO is a 

high-frequency asymptotic technique, and it is widely used in the literature to investigate 

scattering problems (Guan et al., 2011; Hamel et al., 2012; Huang et al., 2011; Lee et al., 2008; 

Letrou and Boag, 2012; Roudstein and Boag, 2011; Wu et al., 2011). Although it is accurate 

for analyzing the scattering from large metallic objects, PO gives wrong diffracted fields at the 

edges. The second defeat of the PO is the definition of surface currents. The definition of the 

surface currents doesn't include the contributions of the shadow parts. The physical theory of 

diffraction (PTD) is one of the well-known integral-based techniques suggested by Ufimtsev in 

the 1950s (Ufimtsev, 2006). PTD method corrects the defeats of the PO by defining additional 

correction currents. These currents are called fringe currents. 
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Ufimtsev also improved this theory by reducing his surface integrals to reduce the edge 

point contributions, but he did it indirectly, using heuristic considerations (Ufimtsev, 1962). 

Mitzner and Michaeli also independently used this surface to edge reduction technique 

(Mitzner, 1974; Michaeli, 1984). The result of Mitzner's work was formulated in terms of the 

incremental length diffraction coefficients (ILDC), and Michaeli's work was formulated in 

terms of the equivalent edge currents (EEC) for wedge like solutions. Both approaches were 

compared by Knott (Knott, 1985). Michaeli's expressions are finite for all directions of 

incidence and observation for edges. The observation point is described in the oblique incidence 

with two different angles. The first one, 𝛽 is related to the edge contour, and the second one, 𝜑 

is associated with the plane of the perpendicular incidence. The scattering angle 𝛽 was taken 

differently than the incident angle by Michaeli for the oblique incidence. Hence, the equivalent 

edge currents were improved for the observation points out of the Keller's cone. The angle 𝛽 is 

the function of the integral variable, but he did not modify the 𝜑 angle. According to Michaeli's 

equivalent edge current method, the angle of 𝜑 is not a function of the integration variable. 

However, the 𝜑 angle takes different values at the discontinuity of the edges than the values on 

the edges. Because of this, the method gives wrong diffracted fields at the corners. Umul has 

overcome this corner problem by defining the exact form of the equivalent edge currents using 

the axioms of the modified theory of physical optics (MTPO) (Umul 2009; Umul 2008a). This 

study will obtain and generalize a rigorous form of the fringe field expressions using the unit 

vectors. The obtained expressions will be applied to the parabolic reflector geometry, which 

has the perfectly electric conducting (PEC) boundary condition and is fed by the H-polarized 

magnetic line source. The method, which is based on the MTPO axioms, will be applied. Many 

researchers have studied curved surface diffraction. The scattering of the electromagnetic fields 

from the curved surfaces was studied by Büyükaksoy and Uzgören (Bueyuekaksoy and 

Uzgoeren, 1987) and Akduman and Büyükaksoy (Akduman and Büyükaksoy, 1995). Umul 

investigated the scattering of a line source from a cylindrical parabolic impedance reflector 

(Umul, 2008b). Yalcin investigated scattering from a cylindrical reflector fed by an offset 

electrical line source (Yalçin, 2007).  

The time factor of 𝑒𝑥𝑝(𝑗𝜔𝑡) is assumed and suppressed throughout the paper where 𝜔 is 

the angular frequency.  

2. Derivation of the Fringe Fields 

First, the PO diffraction field will be obtained for the half plane problem. The geometry 

of the half plane is given in the Fig. 1. The half plane is lying on the surface

    −= ,,0,,0 zyx . P  and Q  are the arbitrary observation and integration points, 

respectively. 

 

Figure 1. The geometry of the half plane 
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The incident field can be given as  

�⃑⃑� 𝑖 = 𝑒𝑧𝐻0𝑒
𝑗𝑘(𝑥 𝑐𝑜𝑠𝜑0 +𝑦 𝑠𝑖𝑛𝜑0)  (1) 

for the magnetic field polarization. PO current is defined as 

𝐽𝑃𝑂 = 2�⃑⃗� × �⃗⃑⃑�𝑖|𝑠   (2) 

where n


 is the unit normal vector of the half plane and equal to ye


. Magnetic vector potential is written 

as 

𝐴 =
𝜇0

4𝜋
∬ 𝐽𝑃𝑂

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝑆 ′

𝑠′
.  (3) 

The connection between the magnetic vector potential and the scattered magnetic field can be satisfied 

by  

�⃗⃑⃑� =
1

𝜇0
𝛻 × 𝐴 .   (4) 

PO current is written as 

𝐽𝑃𝑂|
𝑠′

= 𝑒𝑥2𝐻0𝑒
𝑗𝑘𝑥′𝑐𝑜𝑠𝜑0  (5) 

with using the Eq. (1) and Eq. (2). Diffraction integral can be composed as 

�⃗⃑⃑� =
𝐻0

2𝜋
∫ ∫ 𝑒𝑗𝑘𝑥 ′𝑐𝑜𝑠𝜑0𝛻 × (𝑒𝑥

𝑒−𝑗𝑘𝑅

𝑅
) 𝑑𝑥 ′𝑑𝑧 ′

∞

𝑥′=0

∞

𝑧′=−∞
   (6) 

with using the Eq. (3), Eq. (4), and Eq. (5) where R  is the ray path and equal to 

[(𝑥 − 𝑥 ′)2 + 𝑦2 + (𝑧 − 𝑧 ′)2]
1

2⁄ . The curl operation in the Eq. (6) is given as 

𝛻 × (𝑒𝑥
𝑒−𝑗𝑘𝑅

𝑅
) = −𝑒𝑦

𝑗𝑘(𝑧−𝑧′)

𝑅

𝑒−𝑗𝑘𝑅

𝑅
+ 𝑒𝑧𝑗𝑘

𝑦

𝑅

𝑒−𝑗𝑘𝑅

𝑅
    (7a) 

and from the Fig. 1 Eq. (7a) is decomposed as 

𝛻 × (𝑒𝑥
𝑒−𝑗𝑘𝑅

𝑅
) = −𝑒𝑦𝑗𝑘 𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛 𝛽

𝑒−𝑗𝑘𝑅

𝑅
+ 𝑒𝑧𝑗𝑘 𝑠𝑖𝑛 𝜂 𝑠𝑖𝑛 𝛽

𝑒−𝑗𝑘𝑅

𝑅
              (7b) 

where 𝑐𝑜𝑠 𝜂 =
𝑧−𝑧′

𝑅1
, 𝑠𝑖𝑛 𝛽 =

𝑅1

𝑅
 and 𝑠𝑖𝑛 𝜂 =

𝑦

𝑅1
respectively. Hence, Eq. (6) is decomposed as 

�⃗⃑⃑� =
𝐻0

2𝜋
∫ ∫ 𝑒𝑗𝑘𝑥 ′𝑐𝑜𝑠𝜑0(−𝑒𝑦𝑗𝑘 𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛 𝛽 + 𝑒𝑧 𝑠𝑖𝑛 𝜂 𝑠𝑖𝑛 𝛽)

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝑥 ′𝑑𝑧 ′

∞

𝑥′=0

∞

𝑧′=−∞
  (8) 

according to the Eq. (7b). 𝑥 ′ part of the Eq. (8) can be taken using the well-known edge point technique. 

The edge point technique is given  

∫ 𝑓(𝑥)𝑒−𝑗𝑘𝑔(𝑥)𝑑𝑥
∞

𝑎
=

1

𝑗𝑘
𝑓(𝑎)

1

𝑔′(𝑎)
𝑒−𝑗𝑘𝑔(𝑎).   (9) 

 The phase function of the diffraction integral is written as 

𝜓 = 𝑥 ′ 𝑐𝑜𝑠𝜑0 −𝑅                          (10) 

where the first derivative 𝜓′ is equal to 𝑐𝑜𝑠𝜑0 +
𝑥−𝑥′

𝑅
. The amplitude function is written as 

𝑓(𝑥) =
𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛 𝛽

𝑅
.              (11) 

At the 𝑥 ′ = 0 point the phase function and its derivative takes the form as 

𝜓 = 𝑅𝑒              (12a) 
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and 

𝜓′ = 𝑐𝑜𝑠𝜑0 −𝑐𝑜𝑠𝛽𝑒           (12b) 

where 𝑅𝑒 is the ray path at the 𝑥 ′ = 0 and equal to [𝜌2 + (𝑧 − 𝑧 ′)2]
1

2⁄ . The amplitude function takes 

the form as 

𝑓(𝑥 ′ = 0) =
𝑐𝑜𝑠 𝜂𝑠𝑖𝑛𝛽𝑒

𝑅𝑒
.              (13) 

Hence, the diffraction integral takes the form as 

�⃗⃑⃑� =
𝐻0

2𝜋
∫ (−𝑒𝑦 𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛𝛽𝑒 +𝑒𝑧 𝑠𝑖𝑛 𝜂 𝑠𝑖𝑛𝛽𝑒)
∞

𝑧′=−∞
 

1

𝑐𝑜𝑠𝜑0 −𝑐𝑜𝑠𝛽𝑒

𝑒−𝑗𝑘𝑅𝑒

𝑅𝑒
𝑑𝑧 ′             (14) 

using Eq. (12a), (12b), and Eq. (13). The stationary phase method can be used to evaluate the 
'z  part of 

the diffraction integral. The phase function of the integral is written as 

𝜓 = 𝑅𝑒                            (15) 

where the first derivative of the phase function is equal to −
𝑧−𝑧′

𝑅𝑒
. The stationary phase point can be 

found by equating the first derivative of the phase function to zero. Then, the stationary phase point is 

found as 

𝑧𝑠 = 𝑧.                            (16) 

At the stationary phase points 𝜂 and 𝛽𝑒 values are equal to 
𝜋

2
 and 𝜋 − 𝜑 respectively. The second 

derivative of the phase function is written as 

𝜓′′ = −
−𝑅𝑒

2+(𝑧−𝑧′)

𝑅𝑒
3               (17) 

and it is equal to 
1

𝑅𝑒
 at the stationary phase point. The amplitude function can be written as 

𝑓(𝑧 ′ = 𝑧) =
𝑠𝑖𝑛𝜑0

𝑐𝑜𝑠𝜑0 +𝑐𝑜𝑠 𝜑

1

𝜌
             (18) 

at the stationary phase point. Hence, PO diffracted magnetic field is written as 

�⃗⃑⃑� = 𝑒𝑧
𝐻0

√2𝜋
𝑒−𝑗

𝜋

4
𝑠𝑖𝑛 𝜑

𝑐𝑜𝑠𝜑+𝑐𝑜𝑠𝜑0

𝑒−𝑗𝑘𝜌

√𝑘𝜌
.         (19) 

The exact diffracted field from the half plane is written as 

�⃗⃑⃑�𝑑 = −𝑒𝑧𝐻0
𝑒

−𝑗
𝜋
4

2√2𝜋
(

1

𝑐𝑜𝑠
𝜑−𝜑0

2

+
1

𝑐𝑜𝑠
𝜑+𝜑0

2

)
𝑒−𝑗𝑘𝜌

√𝑘𝜌
.               (20) 

Equation (20) is rearranged as 

�⃗⃑⃑�𝑑 = −𝑒𝑧𝐻0
𝑒

−𝑗
𝜋
4

√2𝜋

2 𝑐𝑜𝑠
𝜑

2
𝑐𝑜𝑠

𝜑0
2

𝑐𝑜𝑠 𝜑+𝑐𝑜𝑠𝜑0

𝑒−𝑗𝑘𝜌

√𝑘𝜌
.       (21) 

The difference between the exact diffracted field and the PO diffracted field can be found as 

�⃗⃑⃑�𝑓 = −𝑒𝑧
𝑒

−𝑗
𝜋
4

√2𝜋

2𝑐𝑜𝑠
𝜑

2
𝑐𝑜𝑠

𝜑0
2

−𝑠𝑖𝑛 𝜑

𝑐𝑜𝑠𝜑+𝑐𝑜𝑠𝜑0

𝑒−𝑗𝑘𝜌

√𝑘𝜌
                 (22) 

where �⃗⃑⃑�𝑓 is found to be a fringe field. A new coordinate system and other related angles are given in 

Fig. 2 to generalize the magnetic fringe current. 
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Figure 2. The geometry of the related angles 

 The following relations are written  

𝑐𝑜𝑠 𝜑 = −𝑠𝑑 ⋅ �⃑⃗�𝑒,𝑠𝑖𝑛 𝜑 = 𝑠𝑑 ⋅ 𝑑,        (23a) 

 

𝑐𝑜𝑠𝜑0 =𝑠𝑖 ⋅ �⃑⃗�𝑒             (23b) 

and 

 

𝑐𝑜𝑠
𝜑

2
=

1

√2
√1 − 𝑠𝑑 ⋅ �⃑⃗�𝑒           (24a) 

 

𝑐𝑜𝑠
𝜑0

2
=

1

√2
√1 + 𝑠𝑖 ⋅ �⃑⃗�𝑒           (24b) 

from the kinds of direction vectors where �⃑⃗�𝑒 is the vector that is outwards from the edge in the direction 

of the tangent of the surface. The expression of the fringe field is found as 

�⃗⃑⃑�𝑓 = −𝑒𝑧
𝑒

−𝑗
𝜋
4

√2𝜋

√1+𝑠𝑖⋅�⃗⃑�𝑒√1−𝑠𝑑⋅�⃗⃑�𝑒−𝑠𝑑.�⃗�

(𝑠𝑖−𝑠𝑑)⋅�⃗⃑�𝑒

𝑒−𝑗𝑘𝜌

√𝑘𝜌
                (25) 

in terms of the direction vector. Hence, generalized magnetic fringe fields integral expression is defined 

as  

�⃗⃑⃑�𝑓 = −𝑒𝑧
1

2𝜋
∫ 𝐻𝑖(𝑄𝑒)

√1+𝑠𝑖⋅�⃗⃑�𝑒√1−𝑠𝑑⋅�⃗⃑�𝑒−𝑠𝑑⋅�⃗�

(𝑠𝑖−𝑠𝑑)⋅�⃗⃑�𝑒

𝑒−𝑗𝑘𝑅𝑒

𝑅𝑒
𝑑𝑙

𝐶
     (26) 

3. Application 

The geometry of the problem is presented in Fig. 3 where 𝜑′ is the angle of incidence, 𝜌 

is the distance between the source and observation points, 𝜌′ is the distance between the source 

and the reflector, �⃑⃗� is the unit normal vector, 𝑅 is the ray path and P , Q  are the observation 

and reflection points, respectively. The angle between �⃑⃗� and 𝜌′ is equal to 
𝜑′

2
. 𝑓 is the focal 

length of the PEC reflector. The PEC cylindrical reflector is lying between the angles −𝜑0 and 

𝜑0. 
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Figure 3. The geometry of the parabolic reflector, which is illuminated by the magnetic line source 

As can be seen from Fig. 3, the parabolic reflector is fed by the magnetic line source, which is 

defined as  

�⃗⃑⃑�𝑖 = 𝑒𝑧𝐼𝑚
𝑒−𝑗𝑘𝜌

√𝑘𝜌
             (27) 

where 𝐼𝑚 is the complex amplitude factor. PO electric current can be written directly 

𝐽𝑃𝑂 = 2(𝑐𝑜𝑠
𝜑′

2
𝑒𝜑 + 𝑠𝑖𝑛

𝜑′

2
𝑒𝜌) 𝐼𝑚

𝑒−𝑗𝑘𝜌′

√𝑘𝜌′
               (28) 

where n


 is the unit normal vector which is defined in the Eq. (2) and equal to −𝑐𝑜𝑠
𝜑′

2
𝑒𝜌 +

𝑠𝑖𝑛
𝜑′

2
𝑒𝜑 for the problem geometry. The scattered magnetic field is written as 

�⃗⃑⃑�𝑃𝑂 =
𝐼𝑚

2𝜋
∬ 𝛻 × (𝑒𝜑 𝑐𝑜𝑠

𝜑′

2

𝑒−𝑗𝑘𝑅

𝑅
+ 𝑒𝜌 𝑠𝑖𝑛

𝜑′

2

𝑒−𝑗𝑘𝑅

𝑅
)

𝑒−𝑗𝑘𝜌′

√𝑘𝜌′
𝑑𝑆 ′

𝑠′
            (29) 

from expressions of the Eq. (3), (4), and Eq. (27). 𝑅 is the ray path and equal to 

[𝜌2 + 𝜌′2 − 2𝜌𝜌′ 𝑐𝑜𝑠(𝜑 − 𝜑′) + (𝑧 − 𝑧 ′)2]
1

2⁄

 where 𝜌′ is equal to 
𝑓

𝑐𝑜𝑠2𝜑′

2

. The curl operation 

of the Eq. (29) is written as 

1

𝜌
(𝑒𝑧 (𝑐𝑜𝑠

𝜑′

2

𝑒−𝑗𝑘𝑅

𝑅
− 𝑐𝑜𝑠

𝜑′

2
𝑗𝑘

𝑒−𝑗𝑘𝑅

𝑅

𝜕𝑅

𝜕𝜌
+ 𝑠𝑖𝑛

𝜑′

2
𝑗𝑘

𝑒−𝑗𝑘𝑅

𝑅

𝜕𝑅

𝜕𝜑
))             (30) 

where the derivatives of the ray path according to the 𝜌 and 𝜑 are equal to 
𝜌−𝜌′ 𝑐𝑜𝑠(𝜑−𝜑′)

𝑅
 and 

𝜌𝜌′ 𝑠𝑖𝑛(𝜑−𝜑′)

𝑅
 respectively. The angle equalities of the derivative values can be written as 

𝜕𝑅

𝜕𝜌
= 𝑐𝑜𝑠 (𝜑 −

𝜑′

2
+ 𝛽)          (31a) 

and 

𝜕𝑅

𝜕𝜑
= 𝑠𝑖𝑛 (𝜑 −

𝜑′

2
+ 𝛽)          (31b) 

from Fig. 3. The angle equalities are inserted into Eq. (30), and the rearranged form of Eq. (30) 

is written as 
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𝑒𝑧 {
𝑒−𝑗𝑘𝑅

𝑅
(
1

𝜌
𝑐𝑜𝑠

𝜑′

2
+ 𝑗𝑘 𝑐𝑜𝑠(𝜑 − 𝜑′ + 𝛽))}               (32) 

to be the end of the curl operation. The Eq. (29) is rewritten as 

�⃗⃑⃑�𝑃𝑂 = 𝑒𝑧
𝐼𝑚

2𝜋
∫ ∫

𝑒−𝑗𝑘𝜌′

√𝑘𝜌′
(
1

𝜌
𝑐𝑜𝑠

𝜑′

2
+ 𝑗𝑘 𝑐𝑜𝑠(𝜑 − 𝜑′ + 𝜑))

𝑒−𝑗𝑘𝑅

𝑅
𝜌′𝑑𝜑′𝑑𝑧 ′

𝜑0

𝜑′=−𝜑0

∞

𝑧′=−∞
 

                         (33) 

with using Eq. (29) and Eq. (32). The 𝑧 ′part of the integral can be eliminated 

∫ 𝑒−𝑗𝑘𝑅1𝑐ℎ𝛼𝑑𝛼
𝑐

=
𝜋

𝑗
𝐻0

(2)(𝑘𝑅1)                (34) 

where 𝑧 − 𝑧 ′ = 𝑅1𝑠ℎ𝛼 and 𝑅 = [𝑅1
2 + (𝑧 − 𝑧 ′)2]

1
2⁄ . Hence, Eq. (33) is written as 

�⃗⃑⃑�𝑃𝑂 = 𝑒𝑧
𝐼𝑚

2𝑗
∫

𝑒−𝑗𝑘𝜌′

√𝑘𝜌′
(
1

𝜌
𝑐𝑜𝑠

𝜑′

2
+ 𝑗𝑘 𝑐𝑜𝑠(𝜑 − 𝜑′ + 𝛽))𝐻0

(2)
(𝑘𝑅1)𝜌

′𝑑𝜑′𝜑0

𝜑′=−𝜑0
  

             (35) 

for Eq. (34). The effect of the edges of the parabolic reflector can be found by applying the 

fringe field expression. The geometry of the diffracted field is given in the Fig. 4.  
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Figure 4. The geometry of the diffracted field 

 The related expressions are defined as 

𝑠𝑖 = 𝑑 𝑐𝑜𝑠
𝜑0

2
+ �⃑⃗�𝑒 𝑠𝑖𝑛

𝜑0

2
            (36) 

and 

𝑠𝑑 = �⃑⃗�𝑒 𝑐𝑜𝑠 𝛽 + 𝑑 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜂                (37) 

where 𝑑 = 𝑒𝜌and �⃑⃗�𝑒 = 𝑒𝜑 for the upper edge. When the Eq. (36) and Eq. (37) are inserted to 

the Eq. (26), the fringe field expression is written as 

�⃗⃑⃑�𝑓
𝑢 = −𝑒𝑧

1

2𝜋
 

∫ 𝐼𝑚
𝑒−𝑗𝑘𝜌0

√𝑘𝜌0

√1 + 𝑠𝑖𝑛
𝜑0

2 √1 − 𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜂

𝑠𝑖𝑛
𝜑0

2
− 𝑐𝑜𝑠 𝛽

∞

𝑧 ′=−∞

 



68 
 

𝑒−𝑗𝑘𝑅𝑒

𝑅𝑒
𝑑𝑧 ′                        (38) 

where 𝑅𝑒 is the ray path and equal to [𝜌2 + 𝜌0
2 − 2𝜌𝜌0 𝑐𝑜𝑠(𝜑 − 𝜑0) + (𝑧 − 𝑧 ′)2]

1
2⁄ . The 

phase function is written as 

𝜓 = 𝑅𝑒              (39) 

where the first derivative of the phase function is equal to 𝜓′ = −
𝑧−𝑧 ′

𝑅𝑒
. The stationary phase 

point can be found by equating the first derivative of the phase function to zero. Hence, the 

stationary phase point 𝑧𝑠
′  is equal to 𝑧. The second derivative of the phase function can be 

written as 

𝜓𝑠
′′ =

1

𝑅𝑒𝑠
              (40) 

at the stationary phase point where 𝑅𝑒𝑠 is equal to [𝜌2 + 𝜌0
2 − 2𝜌𝜌0 𝑐𝑜𝑠(𝜑 − 𝜑0)]

1
2⁄ . The 

amplitude function is written as 

𝑓(𝑧𝑠
′ = 𝑧) =

√1+𝑠𝑖𝑛
𝜑0
2

√1−𝑐𝑜𝑠𝛽−𝑠𝑖𝑛𝛽𝑠 𝑠𝑖𝑛𝜂𝑠

𝑠𝑖𝑛
𝜑0
2

−𝑐𝑜𝑠𝛽𝑠

1

𝑅𝑒𝑠
         (41) 

at the stationary phase point. Hence, Eq. (38) can be rewritten as 

�⃗⃑⃑�𝑓
𝑢 = −𝑒𝑧

𝐼𝑚

√2𝜋

𝑒−𝑗𝑘𝜌0

√𝑘𝜌0

 

𝑒−𝑗
𝜋

4

√1+𝑠𝑖𝑛
𝜑0
2

√1−𝑐𝑜𝑠𝛽𝑠−𝑠𝑖𝑛𝛽𝑠 𝑠𝑖𝑛𝜂𝑠

𝑠𝑖𝑛
𝜑0
2

+𝑐𝑜𝑠𝛽𝑠

𝑒−𝑗𝑘𝑅𝑒𝑠

√𝑘𝑅𝑒𝑠
                (42) 

where the 𝛽𝑠 and 𝜂𝑠 is equal to 𝜋 − 𝜑 and 
𝜋

2
, respectively. The related expressions for the lower 

edge of the PEC cylindrical reflector are defined as 

𝑠𝑖 = 𝑑 𝑐𝑜𝑠
𝜑0

2
+ �⃑⃗�𝑒 𝑠𝑖𝑛

𝜑0

2
            (43) 

and 

𝑠𝑑 = �⃑⃗�𝑒 𝑐𝑜𝑠 𝛽 + 𝑑 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜂         (44) 

where 𝑑 and �⃑⃗�𝑒 is equal to 𝑒𝜌 and −𝑒𝜑 respectively. The Eq. (26) is written as 

�⃗⃑⃑�𝑓
𝑙 = 𝑒𝑧

𝐼𝑚
2𝜋

𝑒−𝑗𝑘𝜌0

√𝑘𝜌0

 

∫
√1+𝑠𝑖𝑛

𝜑0
2

√1−𝑐𝑜𝑠𝛽−𝑠𝑖𝑛𝛽 𝑠𝑖𝑛 𝜂

𝑠𝑖𝑛
𝜑0
2

−𝑐𝑜𝑠𝛽

𝑒−𝑗𝑘𝑅𝑒

𝑅𝑒
𝑑𝑧

∞

𝑧=−∞
               (45) 

for the lower edge where 𝑅𝑒 is equal to [𝜌2 + 𝜌0
2 − 2𝜌𝜌0 𝑐𝑜𝑠(𝜑 + 𝜑0) + (𝑧 − 𝑧 ′)2]

1
2⁄ . The 

phase function of the Eq. (45) is written as 

𝜓 = 𝑅𝑒              (46) 
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and its first derivative 𝜓′ is equal to −
𝑧−𝑧 ′

𝑅𝑒
. The stationary phase point can be found as 𝑧𝑠

′ = 𝑧 

with equating the first derivative of the phase function to zero. The second derivative of the 

phase function is written as 

𝜓𝑠
′′ =

1

𝑅𝑒𝑠
              (47) 

at the stationary phase point and 𝑅𝑒𝑠 is equal to [𝜌2 + 𝜌0
2 − 2𝜌𝜌0 𝑐𝑜𝑠(𝜑 + 𝜑0)]

1
2⁄ . The value 

of the amplitude function is written as 

𝑓(𝑧𝑠
′ = 𝑧) =

√1+𝑠𝑖𝑛
𝜑0
2

√1−𝑐𝑜𝑠𝛽𝑠−𝑠𝑖𝑛𝛽𝑠 𝑠𝑖𝑛𝜂𝑠

𝑠𝑖𝑛
𝜑0
2

−𝑐𝑜𝑠𝛽𝑠

1

𝑅𝑒𝑠
                (48) 

at the stationary phase point and the values of the angles 𝛽𝑠, 𝜂𝑠 are equal to 𝜋 − 𝜑 and 
𝜋

2
, 

respectively. Hence, Eq. (45) is rewritten as 

�⃗⃑⃑�𝑓
𝑙 = −𝑒𝑧

𝐼𝑚

√2𝜋

𝑒−𝑗𝑘𝜌0

√𝑘𝜌0
𝑒−𝑗

𝜋

4

√1+𝑠𝑖𝑛
𝜑0
2

√1−𝑐𝑜𝑠𝛽𝑠−𝑠𝑖𝑛𝛽𝑠

𝑠𝑖𝑛
𝜑0
2

−𝑐𝑜𝑠𝛽𝑠

𝑒−𝑗𝑘𝑅𝑒𝑠

√𝑘𝑅𝑒𝑠
.               (49) 

The exact diffracted field can be found as 

�⃗⃑⃑�𝐸 = �⃗⃑⃑�𝑃𝑂 + �⃗⃑⃑�𝑓
𝑢 + �⃑⃗⃑�𝑓

𝑙             (50) 

with adding the contributions of the fringe fields to the PO diffracted field. 

4. Numerical Analysis 

In this analysis, the exact diffracted fields, fringe fields, and diffracted PO fields will be 

investigated. The observation distance is taken reasonably from the scatterer to investigate the 

far field radiation. The observation distance will be taken as 7𝜆, where 𝜆 is the wavelength. The 

focal length 𝑓 will be taken as 2𝜆. The parabolic reflector will be positioned between the angles 

−𝜑0 and𝜑0. 

 

Figure 5. Exact diffracted fields 
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Figure 5 shows the exact diffracted fields from the edges of the parabolic reflector, which 

is given in Eq. (49) for different incident angles. The amplitude values of the diffracted fields 

are significant in the reflection region. The main beams can be observed between the angles 

150˚ and 210˚. The maximum radiation is observed at 180˚. The fields' amplitudes take the 

minimum values at 90˚ and 270˚. The effect of the incident angle𝜑0 can be seen directly from 

Fig. 5. The diffracted fields' amplitudes decrease in the reflection region when the incident 

angle increases.  

 

Figure 6. PO, fringe, and exact diffracted fields for 𝜑0 =
𝜋

4
 

Figure 6 shows the exact, fringe and PO diffracted fields. PO diffracted field in perfect 

harmony with the exact diffracted field except for the reflection boundaries, which are the 

angles 45˚ and 315˚, respectively. PO and exact diffracted fields take maximum amplitude 

values at 180˚. Although the PO diffracted field's amplitude goes to zero at 90˚ and 270˚, exact 

diffracted fields take different amplitude values at that angle. The fringe diffracted fields' 

amplitude takes the major values between the reflection regions. The minor lobes are observed 

between the angles 90˚ and 270˚. The fringe diffracted fields fix the defeats of the PO diffracted 

fields in reflection and shadow boundaries and reflection and shadow regions. 

4. Conclusions 

In this study, scattering surface integrals were reduced to the line integrals to investigate 

the exact diffracted fields. In addition, this formulation was generalized for various diffraction 

applications. This formulation is based on the MTPO axioms. In contrast to the other 

approaches, this derived expression is based on the MTPO axioms, and the scattering angle is 

variable at the corners and the edges. This is the main advantage of this approach. This new 

formulation was applied to the PEC cylindrical parabolic reflector geometry, which was fed by 

the H-polarized line source. The PO diffracted fields were found. Fringe field expressions were 

derived. The asymptotic evaluations of the diffraction integrals were yielding the fringe fields. 

The fringe fields were used to fix the PO diffracted fields, and the exact diffracted fields were 

obtained. The PO, fringe, and exact diffracted fields were analyzed numerically. The exact 

diffracted fields were investigated numerically for different incident angles. It is observed that 

the results are in harmony with the theory. 
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