

Thermal Instability of A Polymer Panel Reinforced with Glass Particulates

Abdelmoutalib BENFRID ^{*1,2}, Krzysztof MURAWSKI ³, Belmahi SAMIR ⁴

¹ Djillali Liabès University in Sidi Bel Abbès, Algeria

² Libyan Society for Research and Scientific Studies

³ Jacob of Paradies University of Gorzów Wielkopolski, Poland

⁴ Maghnia University Centre, Institute of Technology, Algeria

Corresponding author: benfridabdelmoutalib2050@gmail.com

Abstract

Water and oil reservoirs are commonly made from polymers. To enhance their mechanical strength, the technique of incorporating short glass particulates into the polymers is employed. This method improves the overall reliability of the reservoirs. The objective of this study is to analyze the thermal instability that occurs during the buckling of panels in these reservoirs. Previous research has shown that the addition of short glass particulates can negatively impact thermal buckling. In the first stage of this study, polymers will be mixed with 10% and 20% short glass particulates, and a calculation script will be developed to determine the thermal buckling behavior.

Research Article

Article History

Received : 10.10.2025

Accepted : 18.12.2025

Keywords

Polymers Reservoirs,
Glass Particulates,
Thermal Buckling,
Mechanical Strength

1. Introduction

Polymer reservoirs are commonly used for the storage of water, oils, and petroleum products such as gasoline and diesel. These reservoirs can have cylindrical, ellipsoidal, square, or rectangular shapes. Like all structures, polymer reservoirs are subjected to mechanical and thermal loads. This study specifically focuses on the thermal loads applied to square or rectangular walls to assess the variation in the critical buckling temperature. Youssef Hilali et al. (2025) studied the thermal buckling and post-buckling behavior of functionally graded material (FGM) plates using a higher-order theory, demonstrating accurate predictions of structural responses (Hilali et al., 2025). Guangjie Han et al. (2025) investigated the buckling and post-buckling behavior of FGM plates reinforced with graphene nanoplatelets, showing that graphene significantly enhances the stiffness of the plates (Han et al., 2025). Han Zhang et al. (2019) conducted a comprehensive study on the buckling behavior of marine pipes, providing an overview of stability, buckling, and free vibration analysis of FGM structures (Zhang et al., 2019). Irina Vikhareva et al. (2021) examined biodegradable polymer materials modified with microstructured titanium phosphate under thermal loading and concluded that the modified polymers outperform conventional polymers (Vikhareva et al., 2021). Joris Doumouro et al. (2021) quantitatively analyzed heat transfer between particulates at the micrometer scale, offering precise measurements of thermal contact resistance (Doumouro et al., 2021). Ike (2025) conducted a study on plate buckling using the Galerkin method (Ike, 2025), and also investigated the buckling of Euler-Bernoulli beams resting on elastic foundations (Ike, 2024a). Further, Ike (2024b) analyzed beam buckling using the Ritz variational method with two foundation parameters (Ike, 2024b). Turan et al. (2024) studied the buckling of orthotropic FGM plates considering shear deformation effects (Turan, 2024). Finally, Turan et al. (2025) analyzed the lateral-torsional stability and various buckling behaviors of structural elements under uniform mechanical or thermal loading, taking shear deformation into account (Turan et al., 2025). Numerous studies have focused on improving concrete properties. Harrat et al. (2021) examined the agglomeration of nanosilica in concrete applied to beams, highlighting its influence on structural performance (Harrat et al., 2021). Chatbi et al. (2022) evaluated the effect of nanosilica in slabs resting on elastic foundations, demonstrating enhanced bending behavior (Chatbi et al., 2022). Benfrid et al. (2023) investigated the thermomechanical performance of panels incorporating glass powder, providing a detailed evaluation of limitations and performance (Benfrid et al., 2023). Elhennani et al. (2023) analyzed beams reinforced with three types of nanoparticles, considering buckling and free vibration on multi-parameter elastic foundations (Elhennani et al., 2023). Kechir et al. (2024) conducted a study on beams with nano-sized iron oxide particles, showing improved mechanical performance and bending behavior (Kechir et al., 2024). Several researchers have studied metal-based fibers. Błaszczyński and Przybyska-Fałek (2015) demonstrated that the addition of steel fibers increases the critical compression load (Błaszczyński and Przybyska-Fałek, 2015). Khaloo and Afshari (2005) affirmed that fiber-reinforced slabs exhibit improved deflection resistance (Khaloo and Afshari, 2005). Mohod (2012) noted a slight reduction in workability but a significant increase in mechanical strengths (Mohod, 2012). Other studies, such as those by Mujalli et al. (2022), indicated approximately a 2% improvement in the performance of steel fiber-reinforced concrete compared to conventional concrete (Mujalli et al., 2022).

This study aims to address two key issues. The first is the homogenization of polymers with glass particulates at 10% and 20%. The second is a thermal buckling case study using the First-Order Shear Deformation Theory (FSDT) for plates.

2. Material and Method

2.1. Homogenization

For the homogenization process, the mixing method was examined to determine the thermo-mechanical properties of polymers mixed with glass particulates. For the polymers, the elastic modulus is 2 GPa, the Poisson's ratio is 0.2, and the thermal expansion coefficient is $80 \times 10^{-6} /^\circ\text{C}$. For glass particulates, the elastic modulus is 70 GPa, the Poisson's ratio is 0.16, and the thermal expansion coefficient is $7 \times 10^{-6} /^\circ\text{C}$ (Chawla, 2000; Mallick, 2000). A decrease in both mechanical and thermal properties is observed with the incorporation of glass particulates.

$$X_f = X_c * V_c + X_s * V_s$$

Table 1. The thermomechanical properties.

Vf (%)	The elastic modulus (GPa)	The thermal expansion coefficient ($10^{-6} /^\circ\text{C}$)	The Poisson's ratio
0	2	80.1	0.22
10	8.9	72.9	0.2
20	15.7	65.6	0.19

2.2. Study of thermal buckling

En utilisant la référence (Sayyad and Ghugal, 2014), créez un script de calcul capable de calculer le flambage thermique.

$$M_O := \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\alpha_{hom} \cdot E_{hom} \cdot \Delta T \cdot \alpha_{hom}}{(1 - \nu_{hom})} dz$$

2.3. Validation

To validate the FSDT program, it must be compared with a small deflection program (Cheng, 2018). Below is Table 2.

Table 2. The validation of the results through comparison between X chang (Cheng, 2018) and the currently available program script (FSDT).

References	X. Cheng (SD)[16]	Present FSDT
b=a; a=30h	146.6	160.7
b=3a;a=30h	87.1	89.2
b=a;a=40h	88.1	90.4
b=3a;a=30h	48.9	50.2

3. Results and Discussion

The critical buckling temperature of polymer panels reinforced with glass particulates is shown for both square panels (Table 3) and rectangular panels with a length/width ratio of 2 (Table 4).

Table 3. The variation of the critical temperature for the square plate.

a/h; a=b	0%G-F	10%G-F	20%G-F
5	49.7	60.4	75.0
10	14.2	17.2	21.4
15	6.5	7.9	9.7
20	3.7	4.5	5.5
25	2.4	2.9	3.6
30	1.6	2.0	2.5
35	1.2	1.5	1.8
40	0.9	1.1	1.4
45	0.7	0.9	1.1
50	0.6	0.7	0.9

Table 4. The variation of the critical temperature for the rectangular plate.

a/h; a=b	0% G-F	10%G-F	20%G-F
5	29.8	36.2	44.9
10	8.0	9.8	12.1
15	3.6	4.4	5.5
20	2.1	2.5	3.1
25	1.3	1.6	2.0
30	0.9	1.1	1.4
35	0.7	0.8	1.0
40	0.5	0.6	0.8
45	0.4	0.5	0.6
50	0.3	0.4	0.5

The variation in critical buckling temperature for both square and rectangular plates follows similar trends. For square plates, the critical temperature decreases as the a/h ratio increases, indicating that thicker panels are more resistant to thermal buckling. The addition of glass particulates significantly improves the critical temperature, with the highest improvement observed at a 20% glass particulates content. For example, at a/h = 5, the critical temperature increases from 49.69°C for pure polymers to 74.97°C for 20% glass particulates reinforced polymers. However, the rate of improvement diminishes as the a/h ratio increases. For higher a/h values (e.g., 50), the increase in critical temperature is smaller, ranging from 0.59°C for pure polymers to 0.89°C for 20% glass particulates reinforced polymers. For rectangular plates, similar trends are observed, with the critical temperature decreasing as the a/h ratio increases. The overall effect of glass particulates reinforcement is also significant, especially at 10% and 20% particulates content. At a/h = 5, the critical temperature for pure polymers (0% s-f) is 29.79°C, while for 20% glass particulates, it increases to 44.91°C, indicating the positive influence of glass particulates on thermal stability. Again, as the a/h ratio increases, the improvement in critical temperature with the addition of glass particulates becomes less

pronounced. At $a/h = 50$, the critical temperature rises from 0.33°C for pure polymers to 0.50°C for 20% glass particulates reinforced polymers.

4. Conclusion

The addition of glass particulates to polymers significantly enhances their thermal buckling resistance, particularly for thinner panels. This improvement is most noticeable at lower a/h ratios and diminishes as the panels become thicker. Glass particulates-reinforced polymers are thus especially suitable for applications where improved thermal stability is essential.

Reference

- Benfrid, A., Benbakhti, A., Harrat, Z.R., Chatbi, M., Krour, B., Bouiadja, M.B., 2023. Thermomechanical analysis of glass powder based eco-concrete panels: Limitations and performance evaluation. *Periodica Polytechnica Civil Engineering*, 67(4):1284–1297.
- Błaszczyński, T., Przybylska-Fałek, M., 2015. Steel fibre reinforced concrete as a structural material. *Procedia Engineering*, 122: 282–289.
- Chatbi, M., Krour, B., Benatta, M.A., Harrat, Z.R., Amziane, S., Bouiadja, M.B., 2022. Bending analysis of nano- SiO_2 reinforced concrete slabs resting on elastic foundation. *Structural Engineering and Mechanics*, 84(5): 685–697.
- Chawla, R., 2000. Fiberglass reinforced composites. *Materials Science and Engineering: R: Reports*, 31(1): 1–35.
- Cheng, X., 2018. Thermal Elastic Mechanics Problems of Concrete Rectangular Thin Plate. Springer.
- Doumouro, J., Perros, E., Dodu, A., Rahbany, N., Leprat, D., Krachmalnicoff, V., De Wilde, Y., 2021. Quantitative measurement of the thermal contact resistance between a glass microsphere and a plate. *Physical Review Applied*, 15(1): 014063.
- Elhennani, S.D., Harrat, Z.R., Chatbi, M., Belbachir, A., Krour, B., Işık, E., Harirchian, E., Bouremana, M., Bouiadja, M.B., 2023. Buckling and free vibration analyses of various nanoparticle reinforced concrete beams resting on multi-parameter elastic foundations. *Materials*, 16(17): 5865.
- Han, G., Wan, M., Su, A., Li, B., 2025. Thermal buckling and post-buckling behavior of FGM laminate plates reinforced with graphene nanoplatelets. *Multiscale and Multidisciplinary Modeling, Experiments and Design*, 8(5): 256.
- Harrat, Z.R., Amziane, S., Krour, B., Bouiadja, M.B., 2021. On the static behavior of nano SiO_2 based concrete beams resting on an elastic foundation. *Computers and Concrete*, 27(6): 575–583.
- Hilali, Y., Rassam, M., Mesmoudi, S., Sitli, Y., Elmhaia, O., Rammane, M., Bourihane, O., 2025. A high-order approach for thermal buckling and post-buckling analysis of functionally graded sandwich beams. *Acta Mechanica*, 236(6): 3543–3563.
- Ike, C., 2024. Buckling analysis of Euler–Bernoulli beams resting on two-parameter elastic foundations: closed form solutions. *Iraqi Journal of Civil Engineering*, 18(2): 131–149.
- Ike, C., 2024. Ritz variational method for buckling analysis of Euler–Bernoulli beams resting on two-parameter foundations. *Iraqi Journal of Civil Engineering*, 18(1): 26–49.
- Ike, C.C., 2025. Analysis of single variable thick plate buckling problems using Galerkin method. *NIPES Journal of Science and Technology Research*, 7(2): 235–252.

- Kechir, A., Chatbi, M., Harrat, Z.R., Bouiadjra, M.B., Bouremana, M., Krour, B., 2024. Enhancing the mechanical performance of concrete slabs through the incorporation of nano-sized iron oxide particles (Fe_2O_3): Non-local bending analysis. *Periodica Polytechnica Civil Engineering*, 68(3): 842–858.
- Khaloo, A.R., Afshari, M., 2005. Flexural behaviour of small steel fibre reinforced concrete slabs. *Cement and Concrete Composites*, 27(1): 141–149.
- Mallick, P.K., 2000. Effect of fiber orientation on mechanical properties of glass fiber reinforced polymers. *Composites Science and Technology*, 60(15): 2739–2750.
- Mohod, M.V., 2012. Performance of steel fiber reinforced concrete. *International Journal of Engineering and Science*, 1(12): 1–4.
- Mujalli, M.A., Dirar, S., Mushtaha, E., Hussien, A., Maksoud, A., 2022. Evaluation of the tensile characteristics and bond behaviour of steel fibre-reinforced concrete: An overview. *Fibers*, 10(12) : 104.
- Sayyad, A.S., Ghugal, Y.M., 2014. A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates. *International Journal of Mechanics and Materials in Design*, 10(3): 247–267.
- Turan, F., 2024. Critical buckling load analysis of porous orthotropic two-layered cylindrical panels based on trigonometric shear deformation theory. *Iranian Journal of Science and Technology, Transactions of Civil Engineering*, 1–17.
- Turan, F., Basoglu, M.F., Hoang, V.N.V., 2025. Lateral torsional stability of porous thin-walled I-beams with nonuniform porosity distributions subjected to a uniformly distributed load. *Acta Mechanica*, 236(1): 153–171.
- Vikhareva, I.N., Buylova, E.A., Yarmuhamedova, G.U., Aminova, G.K., Mazitova, A.K., 2021. An overview of the main trends in the creation of biodegradable polymer materials. *Journal of Chemistry*, 2021(1): 5099705.
- Zhang, N., Khan, T., Guo, H., Shi, S., Zhong, W., Zhang, W., 2019. Functionally graded materials: an overview of stability, buckling, and free vibration analysis. *Advances in Materials Science and Engineering*, 2019(1): 1354150.